Road vehicle dynamics / (Registro nro. 17184)

000 -CABECERA
Campo de control de longitud fija 17727cam a2200229za04500
001 - NÚMERO DE CONTROL
Campo de control 18349
003 - IDENTIFICADOR DE NÚMERO DE CONTROL
Campo de control CoBo-ECI
005 - FECHA Y HORA DE LA ÚLTIMA TRANSACCIÓN
Campo de control 20160623150856.0
008 - CAMPO FIJO DE DESCRIPCIÓN FIJA--INFORMACIÓN GENERAL
Campo de control de longitud fija 050630s2008 pau eng d
020 ## - ISBN (INTERNATIONAL STANDARD BOOK NUMBER)
ISBN 9780768016437
-- 0768016436
040 ## - FUENTE DE CATALOGACIÓN
Agencia de catalogación original DLC
Agencia que realiza la transcripción DLC
Agencia que realiza la modificación YDX
-- BTCTA
-- YDXCP
-- CDX
-- NLGGC
-- TTU
-- UBA
-- DLC
082 00 - NÚMERO DE LA CLASIFICACIÓN DECIMAL DEWEY
Número de clasificación Decimal 629.231
Número de documento (Cutter) R628
245 00 - TÍTULO PROPIAMENTE DICHO
Título Road vehicle dynamics /
Mención de responsabilidad, etc. Rao Dukkipati ... [et al.].
260 ## - PUBLICACIÓN, DISTRIBUCIÓN, ETC (PIE DE IMPRENTA)
Lugar de publicación, distribución, etc. Warrendale, Pennsylvania :
Nombre del editor, distribuidor, etc. SAE International,
Fecha de publicación, distribución, etc. c2008.
300 ## - DESCRIPCIÓN FÍSICA
Extensión xxii, 852 p. :
Otros detalles físicos il. ;
Dimensiones 29 cm.
500 ## - NOTA GENERAL
Nota general Ejempar 2: Problemas y soluciones
504 ## - NOTA DE BIBLIOGRAFÍA, ETC.
Bibliografía, etc. Incluye Bibliografía e indices
505 ## - NOTA DE CONTENIDO FORMATEADA
Nota de contenido con formato preestablecido Foreword <br/>Preface <br/>Chapter 1 Introduction <br/>1.1 General <br/>1.2 Vehicle System Classification <br/>1.3 Dynamic System <br/>1.4 Classification of Dynamic System Models <br/>1.5 Constraints, Generalized Coordinates, and Degrees of Freedom <br/>1.6 Discrete and Continuous Systems <br/>1.7 Vibration Analysis <br/>1.8 Elements of Vibrating Systems <br/>1.8.1 Spring Elements <br/>1.8.2 Potential Energy of Linear Springs <br/>1.8.3 Equivalent Springs <br/>1.8.3.1 Springs in Parallel <br/>1.8.3.2 Springs in Series <br/>1.8.4 Mass or Inertia Elements <br/>1.8.5 Damping Elements <br/>1.8.5.1 Viscous Damping <br/>1.8.5.2 Coulomb Damping <br/>1.8.5.3 Structural or Hysteretic Damping <br/>1.8.5.4 Combination of Damping Elements <br/>1.9 Review of Dynamics <br/>1.9.1 Newton?s Laws of Motion <br/>1.9.2 Kinematics of Rigid Bodies <br/>1.9.3 Linear Momentum <br/>1.9.4 Principle of Conservation of Linear Momentum <br/>1.9.5 Angular Momentum <br/>1.9.6 Equations of Motion for a Rigid Body <br/>1.9.7 Angular Momentum of a Rigid Body <br/>1.9.8 Principle of Work and Energy <br/>1.9.9 Conservation of Energy <br/>1.9.10 Principle of Impulse and Momentum <br/>1.9.11 Mechanical Systems <br/>1.9.12 Translational Systems <br/>1.9.13 Rotational Systems <br/>1.9.14 Translation and Rotational Systems <br/>1.9.15 Angular Momentum and Moments of Inertia <br/>1.9.16 Geared Systems <br/>1.10 Lagrange?s Equation <br/>1.10.1 Degrees of Freedom <br/>1.10.2 Generalized Coordinates <br/>1.10.3 Constraints <br/>1.10.4 Principle of Virtual Work <br/>1.10.5 D? Alembert?s Principle <br/>1.10.6 Generalized Force <br/>1.10.7 Lagrange?s Equations of Motion <br/>1.10.8 Holonomic Systems <br/>1.10.9 Nonholonomic Systems <br/>1.10.10 Rayleigh?s Dissipation Function <br/>1.11 Summary <br/>1.12 References <br/>1.13 Problems <br/>Chapter 2 Analysis of Dynamic Systems <br/>2.1 Introduction <br/>2.2 Classification of Vibrations <br/>2.3 Classification of Deterministic Data <br/>2.3.1 Sinusoidal Periodic Data <br/>2.3.2 Complex Periodic Data <br/>2.3.3 Almost Periodic Data <br/>2.3.4 Transient Nonperiodic Data <br/>2.4 Linear Dynamic Systems <br/>2.4.1 Linear Single-Degree-of-Freedom System <br/>2.4.2 Free Vibrations of a Single-Degree-of-Freedom System <br/>2.4.3 Forced Vibration of a Single-Degree-of-Freedom System <br/>2.4.4 Linear Multiple-Degrees-of-Freedom System <br/>2.4.5 Eigenvalues and Eigenvectors: Undamped System <br/>2.4.6 Eigenvalues and Eigenvectors: Damped System <br/>2.4.7 Forced Vibration Solution of a Multiple-Degrees-of-Freedom<br/>System <br/>2.5 Nonlinear Dynamic Systems <br/>2.5.1 Exact Methods for Nonlinear Systems <br/>2.5.2 Approximate Methods for Nonlinear Systems <br/>2.5.2.1 Iterative Method <br/>2.5.2.2 Ritz Averaging Method <br/>2.5.2.3 Perturbation Method <br/>2.5.2.4 Variation of Parameter Method <br/>2.5.3 Graphical Method <br/>2.5.3.1 Phase Plane Representation <br/>2.5.3.2 Phase Velocity <br/>2.5.4 Multiple-Degrees-of-Freedom Systems <br/>2.6 Random Vibrations <br/>2.6.1 Probability Density Function <br/>2.6.2 Autocorrelation Function <br/>2.7 Gaussian Random Process <br/>2.7.1 Fourier Analysis <br/>2.7.1.1 Fourier Series <br/>2.7.1.2 Fourier Integral <br/>2.7.2 Response of a Single-Degree of Freedom Vibrating System <br/>2.7.2.1 Impulse Response Method <br/>2.7.2.2 Frequency Response Method <br/>2.7.3 Power Spectral Density Function <br/>2.7.4 Joint Probability Density Function <br/>2.7.5 Cross-Correlation Function <br/>2.7.6 Application of Power Spectral Densities to Vehicle Dynamics <br/>2.7.7 Response of a Single-Degree-of-Freedom System to a<br/>Random Inputs <br/>2.7.8 Response of a Multiple-Degrees-of-Freedom System to a<br/>Random Inputs <br/>2.8 Summary <br/>2.9 References <br/>2.10 Problems <br/>Chapter 3 Tire Dynamics <br/>3.1 Introduction <br/>3.2 Vertical Dynamics of Tires <br/>3.2.1 Vertical Stiffness and Damping Characteristics of Tires <br/>3.2.2 Vertical Vibration Mechanics Models of Tires <br/>3.2.2.1 Point Contact Model of Tires <br/>3.2.2.2 Fixed Contact Patch Model of Tires <br/>3.2.2.3 Time-Varying Contact Patch Model of Tires <br/>3.2.3 Enveloping Characteristics of Tires <br/>3.3 Tire Longitudinal Dynamics <br/>3.3.1 Tire Rolling Resistance <br/>3.3.2 Rolling Resistance of the Tire with Toe-In <br/>3.3.3 Rolling Resistance of the Turning Wheel <br/>3.3.4 Longitudinal Adhesion Coefficient <br/>3.3.5 Theoretical Model of Tire Longitudinal Force Under<br/>Driving and Braking <br/>3.4 Tire Lateral Dynamics <br/>3.4.1 Tire Cornering Characteristics <br/>3.4.2 Mathematical Model of the Tire Cornering Characteristic <br/>3.4.2.1 Simplified Mathematical Model of the Tire<br/>Cornering Characteristic <br/>3.4.2.2 Cornering Characteristic with Lateral Bending<br/>Deformation of the Tire Case <br/>3.4.3 Rolling Properties of Tires <br/>3.4.3.1 Cambered Tire Models <br/>3.4.3.2 Cambered Tire Model with Roll Elastic<br/>Deformation of the Tire Carcass <br/>3.5 Tire Mechanics Model Considering Longitudinal Slip and Cornering<br/>Characteristics <br/>3.5.1 C.G. Gim Theoretical Model <br/>3.5.2 K.H. Guo Tire Model <br/>3.5.2.1 Steady-State Simplified Theoretical Tire Model <br/>3.5.2.2 Nonsteady-State Semi-Empirical Tire Mechanics<br/>Model <br/>3.5.3 H.B. Pacejka Magic Formula Model <br/>3.6 Reference s <br/>3.7 Problems <br/>Chapter 4 Ride Dynamics <br/>4.1 Introduction <br/>4.2 Vibration Environment in Road Vehicles <br/>4.2.1 Vibration Sources from the Road <br/>4.2.1.1 Power Spectral Density in Spatial Frequency <br/>4.2.1.2 Power Spectral Density in Temporal Frequency <br/>4.2.2 Vehicle Internal Vibration Sources <br/>4.2.2.1 Vibration Sources from the Powerplant <br/>4.2.2.1.1 Coordinates and Powerplant Modes <br/>4.2.2.1.2 Vibration Sources from Engine Firing<br/>Pulsation <br/>4.2.2.1.3 Vibration Sources from Powerplant Inertia<br/>Forces and Moments <br/>4.2.2.1.4 Powerplant Isolation Design <br/>4.2.2.2 Vibration Sources from the Driveline <br/>4.2.2.2.1 Driveline Imbalance <br/>4.2.2.2.2 Gear Transmission Error <br/>4.2.2.2.3 Second Order Excitation <br/>4.2.2.2.4 Driveshaft Modes and Driveline Modes <br/>4.2.2.3 Vibration Sources from the Exhaust System <br/>4.3 Vehicle Ride Models <br/>4.3.1 Quarter Car Model <br/>4.3.1.1 Modeling for the Quarter Car Model <br/>4.3.1.2 Modal Analysis for the Quarter Car Model <br/>4.3.1.3 Dynamic Analysis for the Quarter Car Model <br/>4.3.1.3.1 Transmissibility Between the Body<br/>Response and Road Excitation <br/>4.3.1.3.2 Transmissibility Between the Body<br/>Response and Vehicle Excitation <br/>4.3.1.3.3 Dynamic Response at Random Input <br/>4.3.2 Bounce-Pitch Model <br/>4.3.3 Other Modeling <br/>4.4 Seat Evaluation and Modeling <br/>4.4.1 Introduction <br/>4.4.2 SEAT Value <br/>4.4.3 Seat Velocity <br/>4.4.4 Linear Seat Modeling and Transmissibility <br/>4.4.5 Nonlinear Seat Modeling and Transmissibility <br/>4.5 Discomfort Evaluation and Human Body Model <br/>4.5.1 Discomfort and Subjective Evaluation <br/>4.5.2 Objective Evaluation of Ride Discomfort <br/>4.5.2.1 Weight Root-Mean-Square Method <br/>4.5.2.2 Objective Evaluation by the Vibration Dose Value <br/>4.5.3 Linear Human Body Modeling <br/>4.5.4 Objective Evaluation by Nonlinear Seat-Human Body<br/>Modeling <br/>4.6 Active and Semi-Active Control <br/>4.6.1 Introduction <br/>4.6.2 Basic Control Concepts <br/>4.6.3 Active Control <br/>4.6.4 Semi-Active Control <br/>4.7 Summary <br/>4.8 References <br/>4.9 Problems <br/>Chapter 5 Vehicle Rollover Analysis <br/>5.1 Introduction <br/>5.1.1 Rollover Scenario <br/>5.1.2 Importance of Rollover <br/>5.1.3 Research on Rollover <br/>5.1.4 Scope of This Chapter <br/>5.2 Rigid Vehicle Rollover Model <br/>5.2.1 Rigid Vehicle Model <br/>5.2.2 Steady-State Rollover on a Flat Road <br/>5.2.3 Tilt Table Ratio (TTR) <br/>5.2.4 Side Pull Ratio (SPR) <br/>5.3 Suspended Vehicle Rollover Model <br/>5.3.1 Steady-State Rollover Model for a Suspended Vehicle <br/>5.3.2 Contribution from the Tire Deflection <br/>5.3.3 Contribution from the Suspension Deflection <br/>5.3.4 Parameters Influencing the Suspended Rollover Model <br/>5.4 Dynamic Rollover Model <br/>5.4.1 Rigid Dynamic Model <br/>5.4.2 Dynamic Rollover Model for a Dependent Suspension<br/>Vehicle <br/>5.4.3 Dynamic Rollover Model for an Independent Suspension<br/>Vehicle <br/>5.4.4 Rollover Simulation Tools <br/>5.5 Dynamic Rollover Threshold <br/>5.5.1 Dynamic Stability Index <br/>5.5.2 Rollover Prevention Energy Reserve <br/>5.5.3 Rollover Prevention Metric <br/>5.5.4 Critical Sliding Velocity <br/>5.6 Occupant in Rollover <br/>5.6.1 Overview of the Occupant and Rollover <br/>5.6.2 Testing of an Occupant Model <br/>5.6.3 Simulation of Occupant Rollover <br/>5.7 Safety and Rollover Control <br/>5.7.1 Overview of Rollover Safety <br/>5.7.2 Sensing of Rollover <br/>5.7.3 Rollover Safety Control <br/>5.8 Summary <br/>5.9 References <br/>5.10 Problems <br/>Chapter 6 Handling Dynamics <br/>6.1 Introduction <br/>6.1.1 Tire Cornering Forces <br/>6.1.2 Forces and Torques in the Tire Contact Area <br/>6.2 The Simplest Handling Models?Two-Degrees-of-Freedom<br/>Yaw Plane Model <br/>6.3 Steady-State Handling Characteristics <br/>6.3.1 Yaw Velocity Gain and Understeer Gradient <br/>6.3.1.1 Neutral Steer <br/>6.3.1.2 Understeer <br/>6.3.1.3 Oversteer <br/>6.3.2 Difference Between Slip Angles of Front and Rear Wheels <br/>6.3.3 Ratio of Radius of Turn <br/>6.4 Dynamic Characteristics of Handling <br/>6.4.1 Handling Damping and Natural Frequency <br/>6.4.2 Step Steer Input Response <br/>6.4.3 Ramp Steer Input Response <br/>6.4.4 Impulse Input Excitation Response <br/>6.4.5 Frequency Response of Yaw Velocity <br/>6.4.6 Stability Analysis <br/>6.4.7 Curvature Response <br/>6.5 Chassis System Effects on Handling Characteristics <br/>6.5.1 Lateral Force Transfer Effects on Cornering <br/>6.5.2 Steering System <br/>6.5.3 Camber Change Effect <br/>6.5.4 Roll Steer Effect <br/>6.5.5 Lateral Force Compliance Steer <br/>6.5.6 Aligning Torque Effects <br/>6.5.7 Effect of Tractive Forces on Cornering <br/>6.6 Handling Safety?Overturning Limit Handling Characteristics <br/>6.7 Nonlinear Models of Handling Dynamics <br/>6.7.1 Multiple-Degree-of-Freedom System Models <br/>6.7.2 An Eight-Degrees-of-Freedom System Model <br/>6.8 Testing of Handling Characteristics <br/>6.8.1 Constant Radius Test <br/>6.8.2 Constant Speed Test <br/>6.8.3 Constant Steer Angle Test <br/>6.8.3.1 Dynamic Testing <br/>6.8.3.2 Simulations and Testing Validation <br/>6.9 Summary <br/>6.10 References <br/>6.11 Problems <br/>Chapter 7 Braking <br/>7.1 Introduction <br/>7.1.1 Types of Automotive Brakes <br/>7.1.2 Braking Distance and Deceleration <br/>7.2 Brake Torque Distribution <br/>7.2.1 Drum Brakes <br/>7.2.1.1 Mechanical Advantage <br/>7.2.1.2 Torque Calculations <br/>7.2.2 Disk Brakes <br/>7.2.3 Consideration of Temperature <br/>7.3 Load Transfer During Braking <br/>7.3.1 Simple Braking on a Horizontal Road <br/>7.3.2 Effect of Aerodynamic and Other Forces <br/>7.3.2.1 Rolling Resistance <br/>7.3.2.2 Aerodynamic Drag <br/>7.3.2.3 Powertrain Resistance <br/>7.3.2.4 Load Transfer on a Horizontal Plane <br/>7.3.3 Effect of Grade <br/>7.4 Optimal Braking Performance <br/>7.4.1 Braking of a Single Axle <br/>7.4.1.1 Braking of the Front Axle <br/>7.4.1.2 Braking of the Rear Axle <br/>7.4.1.3 Safety Considerations <br/>7.4.2 Braking at Both Axles <br/>7.4.2.1 Front Lock-Up <br/>7.4.2.2 Rear Lock-Up <br/>7.4.3 Optimal Braking Performance <br/>7.5 Considerations of Vehicle Safety <br/>7.5.1 Skid (Slip) Condition and Braking <br/>7.5.2 Anti-Lock Braking System <br/>7.6 Pitch Plane Models <br/>7.7 Recent Advances in Automotive Braking <br/>7.8 Summary <br/>7.9 References <br/>7.10 Problems <br/>Chapter 8 Acceleration <br/>8.1 Introduction <br/>8.1.1 Acceleration <br/>8.2 Load Transfer During Acceleration <br/>8.2.1 Simple Acceleration on a Horizontal Road <br/>8.2.2 Effect of Aerodynamic and Other Forces <br/>8.2.3 Effect of Grade <br/>8.3 Traction-Limited Acceleration <br/>8.3.1 Drivetrain Configurations <br/>8.3.2 Front-Wheel Drive <br/>8.3.3 Rear-Wheel Drive <br/>8.3.4 All-Wheel-Drive and Four-by-Four Systems <br/>8.3.4.1 Front Skid <br/>8.3.4.2 Rear Skid <br/>8.3.5 Optimal Tractive Effort <br/>8.4 Power-Limited Acceleration <br/>8.4.1 The Engine <br/>8.4.2 Internal Combustion Engines <br/>8.4.3 The Transmission <br/>8.4.3.1 Manual Transmissions <br/>8.4.3.2 Automatic Transmissions <br/>8.4.3.3 Continuously Variable Transmissions <br/>8.4.4 Vehicle Acceleration <br/>8.5 Safety Features <br/>8.5.1 Limited Slip Axle <br/>8.5.2 Traction Control <br/>8.6 Summary <br/>8.7 References <br/>8.8 Problems <br/>Chapter 9 Total Vehicle Dynamics <br/>9.1 Introduction <br/>9.1.1 Subjective and Objective Evaluations <br/>9.1.2 Target Setting <br/>9.1.3 Vehicle Dynamics Tests and Evaluations <br/>9.1.3.1 Ride <br/>9.1.3.2 Steering <br/>9.1.3.3 Handling <br/>9.1.3.4 Braking <br/>9.1.3.5 Performance <br/>9.2 Steering and Braking <br/>9.2.1 Simple Braking and Steering on a Horizontal Road <br/>9.2.2 Optimal Braking Performance Under Steering <br/>9.2.2.1 Front Lock-Up <br/>9.2.2.2 Rear Lock-Up <br/>9.3 Steering and Acceleration <br/>9.3.1 Simple Acceleration and Steering on a Horizontal Road <br/>9.3.2 Optimal Acceleration Performance Under Steering <br/>9.3.2.1 Front Skid <br/>9.3.2.2 Rear Skid <br/>9.4 Vehicle Critical Speed <br/>9.5 Vehicle Stability <br/>9.6 Summary <br/>9.7 References <br/>9.8 Problems <br/>Chapter 10 Accident Reconstruction <br/>10.1 Introduction and Objectives <br/>10.2 Basic Equations of Motion <br/>10.3 Drag Factor and Coefficient of Friction <br/>10.4 Work, Energy, and the Law of Conservation of Energy <br/>10.5 Driver Perception and Response <br/>10.6 Engineering Models and Animations <br/>10.6.1 Function of Accident Scene Models <br/>10.6.2 Model Application <br/>10.6.3 Reconstruction Animations <br/>10.7 Lane-Change Maneuver Model <br/>10.8 Speed Estimates for Fall, Flip, or Vault <br/>10.8.1 Fall <br/>10.8.2 Flip <br/>10.8.3 Vault <br/>10.9 Speed Estimates from Yaw Marks <br/>10.10 Impact Analysis <br/>10.10.1 Straight Central Impact <br/>10.10.2 Noncentral Collisions <br/>10.10.3 Crush Energy and ?V <br/>10.11 Vehicle?Pedestrian Collisions <br/>10.11.1 Pedestrian Trajectories <br/>10.11.2 Mathematical and Hybrid Models <br/>10.12 Accident Reconstruction Software <br/>10.12.1 Software Acronyms: REC-TEC with DRIVE3 and MSMACRT <br/>10.12.2 VCRware <br/>10.12.3 CRASHEX <br/>10.12.4 AR Software <br/>10.12.5 Engineering Dynamics Corporation (EDC) <br/>10.12.6 Macinnis Engineering Associates (MEA) and MEA Forensic<br/>Engineerrs & Scientists <br/>10.12.7 Maine Computer Group <br/>10.12.8 McHenry Software, Inc. <br/>10.12.9 Software Acronym: VDANL <br/>10.12.10 Expert AutoStats??Vehicle Dimension-Weight-Performance Data <br/>10.12.11 Other AR Software Sites <br/>10.13 Low-Speed Sideswipe Collisions <br/>10.13.1 Funk-Cormier-Bain Model <br/>10.13.2 Modeling Procedure <br/>10.14 Summary of Formulae Used in Accident Reconstruction <br/>10.15 Summary <br/>10.16 References <br/>10.17 Problems <br/>Appendix A Vector Algebra <br/>A.1 Real and Complex Vectors <br/>A.2 Laws of Vector Operation <br/>A.3 Linear Dependence <br/>A.4 Three-Dimensional Vectors <br/>A.5 Properties of Scalar Product of Vectors <br/>A.6 Direction Angles <br/>A.7 Vector Product <br/>A.8 Derivative of a Vector <br/>A.9 References <br/>A.10 Problems <br/>Appendix B Matrix Analysis <br/>B.1 Introduction <br/>B.2 Definitions of Matrices <br/>B.3 Matrix Operations <br/>B.4 Matrix Inversion <br/>B.5 Determinants <br/>B.6 More on Matrix Inversion <br/>B.7 System of Algebraic Equations <br/>B.8 Eigenvalues and Eigenvectors <br/>B.9 Quadratic Forms <br/>B.10 Positive Definite Matrix <br/>B.11 Negative Definite Matrix <br/>B.12 Indefinite Matrix <br/>B.13 Norm of a Vector <br/>B.14 Partitioning of Matrices <br/>B.15 Augmented Matrix <br/>B.16 Matrix Calculus <br/>B.17 Summary <br/>B.18 References <br/>B.19 Problems <br/>B.20 Glossary of Terms <br/>Appendix C Laplace Transforms <br/>C.1 Laplace Transformation <br/>C.2 Existence of Laplace Transform <br/>C.3 Inverse Laplace Transform <br/>C.4 Properties of the Laplace Transform <br/>C.4.1 Multiplication by a Constant <br/>C.4.2 Sum and Difference <br/>C.5 Special Functions <br/>C.5.1 Exponential Function <br/>C.5.2 Step Function <br/>C.5.3 Ramp Function <br/>C.5.4 Pulse Function <br/>C.5.5 Impulse Function <br/>C.5.6 Dirac Delta Function <br/>C.5.7 Sinusoidal Function <br/>C.6 Multiplication of <br/>C.7 Differentiation <br/>C.8 Integration <br/>C.9 Final Value Theorem <br/>C.10 Initial Value Theorem <br/>C.11 Shift in Time <br/>C.12 Complex Shifting <br/>C.13 Real Convolution (Complex Multiplication) <br/>C.14 Inverse Laplace Transformation <br/>C.14.1 Partial Fraction Expansions <br/>C.14.2 Case I?Partial Fraction Expansion When Has<br/>Distinct Roots <br/>C.14.3 Case II?Partial Fraction Expansion When Has<br/>Complex Conjugate Roots <br/>C.14.4 Case III?Partial Fraction Expansion When Has<br/>Repeated Roots <br/>C.15 Solution of Differential Equations <br/>C.16 Summary <br/>C.17 References <br/>C.18 Problems <br/>Appendix D Glossary of Terms <br/>Appendix E Direct Numerical Integration Methods <br/>E.1 Introduction <br/>E.2 Single-Degree-of-Freedom System <br/>E.2.1 Finite Difference Method <br/>E.2.2 Central Difference Method <br/>E.2.3 Runge-Kutta Method <br/>E.3 Multiple-Degrees-of-Freedom System <br/>E.4 Explicit Schemes <br/>E.4.1 Central Difference Method <br/>E.4.2 Fourth-Order Runge-Kutta Method <br/>E.5 Implicit Schemes <br/>E.5.1 Houbolt Method <br/>E.5.2 Wilson-? Method <br/>E.5.3 Newmark-? Method <br/>E.6 Case Studies <br/>E.6.1 Linear Dynamic System <br/>E.6.2 Nonlinear Dynamic System <br/>E.7 Summary <br/>E.8 References <br/>Appendix F Units and Conversion <br/>F.1 The S.I. System of Units <br/>F.2 S.I. Units Prefixes <br/>F.3 S.I. Conversion <br/>F.4 References <br/>F.5 Problems <br/>Appendix G Accident Reconstruction Formulae <br/>G.1 Center of Mass <br/>G.2 Slide-to-a-Stop Speed <br/>G.3 Yaw, Sideslip, and Critical Curve Speed <br/>G.4 Combined Speeds <br/>G.5 360-Degree Momentum Speed Analysis <br/>G.6 Tip and Rollover Speed <br/>G.7 Weight Shift and Speed <br/>G.8 Kinetic Energy and Speed <br/>G.9 Fall, Slip, and Vault Speeds <br/>Bibliography <br/>List of Symbols <br/>Index <br/>About the Authors
520 ## - RESUMEN, ETC.
Nota de sumario, etc. Este libro ofrece un panorama detallado e integral de la dinámica de los sistemas de vehículos de carretera. Los lectores llegarán a entender cómo las leyes físicas, las consideraciones de factores humanos, y las opciones de diseño se unen para afectar paseo un vehículo s, manejo, frenado y aceleración. Tras una introducción y revisión general de la dinámica, los temas incluyen: análisis de sistemas dinámicos; la dinámica de los neumáticos; montar dinámica; análisis de vuelco del vehículo; dinámica de manejo; de frenado; aceleración; y la dinámica total de vehículos
650 ## - ASIENTO SECUNDARIO DE MATERIA--TÉRMINO DE MATERIA
9 (RLIN) 2858
Nombre de materia o nombre geográfico como elemento de entrada AUTOMÓVILES
Enlace DISEÑO Y CONSTRUCCIÓN
Subdivisión general DINAMICA.
942 ## - ELEMENTOS KOHA
Fuente de clasificación o esquema de ordenación en estanterías
Koha tipo de item LIBRO - MATERIAL GENERAL
Existencias
Disponibilidad Mostrar en OPAC Fuente de clasificación o esquema Tipo de Descarte Estado Código de colección Localización permanente Localización actual Localización en estanterías Fecha adquisición Proveedor Forma de Adq Precio normal de compra Datos del ítem (Volumen, Tomo) Número de Inventario Préstamos totales Signatura completa Código de barras Fecha última consulta Fecha último préstamo Número de ejemplar Propiedades de Préstamo KOHA Programa Académico
        Préstamo Normal Colección / Fondo / Acervo / Resguardo Biblioteca Jorge Álvarez Lleras Biblioteca Jorge Álvarez Lleras Fondo general 2014-06-03 AMAZON-4444444001-OC19519 Compra 372784.00 Ej. 1 BIB0000807 3 629.231 R628 023394 2024-04-15 2017-10-24 1 LIBRO - MATERIAL GENERAL Ingeniería Mecánica
        Préstamo Normal Colección / Fondo / Acervo / Resguardo Biblioteca Jorge Álvarez Lleras Biblioteca Jorge Álvarez Lleras Fondo general 2014-06-03 AMAZON-4444444001-OC19519 Compra 372784.00 Ej. 2     629.231 R628 023395 2017-10-11   2 LIBRO - MATERIAL GENERAL Ingeniería Mecánica