Biblioteca
Normal view MARC view ISBD view

Theory of machines and mechanisms / John J. Uicker ; Gordon R. Pennock and Joseph E. Shigley

By: Uicker, John J.
Contributor(s): Pennock, Gordon R | Shigley, Joseph E.
Publisher: New York: Oxford University Press, 2011Edition: 4th ed.Description: 900 p. : il. ; 30 cm.ISBN: 9780195371239.Subject(s): VELOCIDAD | ROBÓTICA | INGENIERÍA MECÁNICA | ACELERACIÓNDDC classification: 621.815
Contents:
Preface About the Authors Part 1 Kinematics and Mechanisms 1 The World of Mechanisms 1.1 Introduction 1.2 Analysis and Synthesis 1.3 The Science of Mechanics 1.4 Terminology, Definitions, and Assumptions 1.5 Planar, Spherical, and Spatial Mechanisms 1.6 Mobility 1.7 Classification of Mechanisms 1.8 Kinematic Inversion 1.9 Grashof's Law 1.10 Mechanical Advantage Problems 2 Position and Displacement 2.1 Locus of a Moving Point 2.2 Position of a Point 2.3 Position Difference Between Two Points 2.4 Apparent Position of a Point 2.5 Absolute Position of a Point 2.6 The Loop-Closure Equation 2.7 Graphic Position Analysis 2.8 Algebraic Position Analysis 2.9 Complex-Algebra Solutions of Planar Vector Equations 2.10 Complex Polar Algebra 2.11 The Chace Solutions to Planar Vector Equations 2.12 Position Analysis Techniques 2.13 Coupler-Curve Generation 2.14 Displacement of a Moving Point 2.15 Displacement Difference Between Two Points 2.16 Rotation and Translation 2.17 Apparent Displacement 2.18 Absolute Displacement 2.19 Apparent Angular Displacement Problems 3 Velocity 3.1 Definition of Velocity 3.2 Rotation of a Rigid Body 3.3 Velocity Difference Between Points of a Rigid Body 3.4 Graphic Methods; Velocity Polygons 3.5 Apparent Velocity of a Point in a Moving Coordinate System 3.6 Apparent Angular Velocity 3.7 Direct Contact and Rolling Contact 3.8 Systematic Strategy for Velocity Analysis 3.9 Analytic Methods 3.10 Complex-Algebra Methods 3.11 The Vector Method 3.12 The Method of Kinematic Coefficients 3.13 Instantaneous Center of Velocity 3.14 The Aronhold-Kennedy Theorem of Three Centers 3.15 Locating Instant Centers of Velocity 3.16 Velocity Analysis Using Instant Centers 3.17 The Angular Velocity Ratio Theorem 3.18 Relationships Between First-Order Kinematic Coefficients and Instant Centers 3.19 Freudenstein's Theorem 3.20 Indices of Merit; Mechanical Advantage 3.21 Centrodes Problems 4 Acceleration 4.1 Definition of Acceleration 4.2 Angular Acceleration 4.3 Acceleration Difference Between Points of a Rigid Body 4.4 Acceleration Polygons 4.5 Apparent Acceleration of a Point in a Moving Coordinate System 4.6 Apparent Angular Acceleration 4.7 Direct Contact and Rolling Contact 4.8 Systematic Strategy for Acceleration Analysis 4.9 Analytic Methods 4.10 Complex-Algebra Methods 4.11 The Chace Solutions 4.12 The Method of Kinematic Coefficients 4.13 The Euler-Savary Equation 4.14 The Bobillier Constructions 4.15 The Instant Center of Acceleration 4.16 The Bresse Circle (or de La Hire Circle) 4.17 Radius of Curvature of Point Trajectory Using Kinematic Coefficients 4.18 The Cubic of Stationary Curvature Problems 5 Multi-Degree-of-Freedom Planar Linkages 5.1 Introduction 5.2 Position Analysis; Algebraic Solution 5.3 Graphic Methods; Velocity Polygons 5.4 Instant Centers of Velocity 5.5 First-Order Kinematic Coefficients 5.6 The Method of Superposition 5.7 Graphic Method; Acceleration Polygons 5.8 Second-Order Kinematic Coefficients 5.9 Path Curvature of a Coupler Point 5.10 The Finite Difference Method Problems Part 2 Design of Mechanisms 6 Cam Design 6.1 Introduction 6.2 Classification of Cams and Followers 6.3 Displacement Diagrams 6.4 Graphical Layout of Cam Profiles 6.5 Kinematic Coefficients of the Follower Motion 6.6 High-Speed Cams 6.7 Standard Cam Motions 6.8 Matching Derivatives of Displacement Diagrams 6.9 Plate Cam with Reciprocating Flat-Face Follower 6.10 Plate Cam with Reciprocating Roller Follower Problems 7 Spur Gears 7.1 Terminology and Definitions 7.2 Fundamental Law of Toothed Gearing 7.3 Involute Properties 7.4 Interchangeable Gears; AGMA Standards 7.5 Fundamentals of Gear-Tooth Action 7.6 The Manufacture of Gear Teeth 7.7 Interference and Undercutting 7.8 Contact Ratio 7.9 Varying the Center Distance 7.10 Involutometry 7.11 Nonstandard Gear Teeth Problems 8 Helical Gears, Bevel Gears, Worms and Worm Gears 8.1 Parallel-Axis Helical Gears 8.2 Helical Gear Tooth Relations 8.3 Helical Gear Tooth Proportions 8.4 Contact of Helical Gear Teeth 8.5 Replacing Spur Gears with Helical Gears 8.6 Herringbone Gears 8.7 Crossed-Axis Helical Gears 8.8 Straight-Tooth Bevel Gears 8.9 Tooth Proportions for Bevel Gears 8.10 Crown and Face Gears 8.11 Spiral Bevel Gears 8.12 Hypoid Gears 8.13 Worms and Worm Gears Problems 9 Mechanism Trains 9.1 Parallel-Axis Gear Trains 9.2 Examples of Gear Trains 9.3 Determining Tooth Numbers 9.4 Epicyclic Gear Trains 9.5 Bevel Gear Epicyclic Trains 9.6 Analysis of Epicyclic Gear Trains by Formula 9.7 Tabular Analysis of Epicyclic Gear Trains 9.8 Summers and Differentials 9.9 All Wheel Drive Train Problems 10 Synthesis of Linkages 10.1 Type, Number, and Dimensional Synthesis 10.2 Function Generation, Path Generation, and Body Guidance 10.3 Two Finitely Separated Positions of a Rigid Body (N = 2) 10.4 Three Finitely Separated Positions of a Rigid Body (N = 3) 10.5 Four Finitely Separated Positions of a Rigid Body (N = 4) 10.6 Five Finitely Separated Positions of a Rigid Body (N = 5) 10.7 Precision Positions; Structural Error; Chebychev Spacing 10.8 The Overlay Method 10.9 Coupler-Curve Synthesis 10.10 Cognate Linkages; The Roberts-Chebychev Theorem 10.11 Freudenstein's Equation 10.12 Analytic Synthesis Using Complex Algebra 10.13 Synthesis of Dwell Mechanisms 10.14 Intermittent Rotary Motion Problems 11 Spatial Mechanisms 11.1 Introduction 11.2 Exceptions to the Mobility of Mechanisms 11.3 The Spatial Position-Analysis Problem 11.4 Spatial Velocity and Acceleration Analyses 11.5 Euler Angles 11.6 The Denavit-Hartenberg Parameters 11.7 Transformation-Matrix Position Analysis 11.8 Matrix Velocity and Acceleration Analyses 11.9 Generalized Mechanism Analysis Computer Programs Problems 12 Robotics 12.1 Introduction 12.2 Topological Arrangements of Robotic Arms 12.3 Forward Kinematics 12.4 Inverse Position Analysis 12.5 Inverse Velocity and Acceleration Analyses 12.6 Robot Actuator Force Analysis Problems Part 3 Dynamics of Machines 13 Static Force Analysis 13.1 Introduction 13.2 Newton's Laws 13.3 Systems of Units 13.4 Applied and Constraint Forces 13.5 Free-Body Diagrams 13.6 Conditions for Equilibrium 13.7 Two- and Three-Force Members 13.8 Four-Force Members 13.9 Friction-Force Models 13.10 Static Force Analysis with Friction 13.11 Spur- and Helical-Gear Force Analysis 13.12 Straight-Tooth-Bevel-Gear Force Analysis 13.13 The Method of Virtual Work 13.14 Euler Column Formula 13.15 The Critical Unit Load 13.16 Critical Unit Load and the Slenderness Ratio 13.17 The Johnson Parabolic Equation Problems 14 Dynamic Force Analysis 14.1 Introduction 14.2 Centroid and Center of Mass 14.3 Mass Moments and Products of Inertia 14.4 Inertia Forces and D'Alembert's Principle 14.5 The Principle of Superposition 14.6 Planar Rotation about a Fixed Center 14.7 Shaking Forces and Moments 14.8 Complex Algebra Approach 14.9 Equation of Motion From Power Equation 14.10 Measuring Mass Moment of Inertia 14.11 Transformation of Inertia Axes 14.12 Euler's Equations of Motion 14.13 Impulse and Momentum 14.14 Angular Impulse and Angular Momentum Problems 15 Vibration Analysis 15.1 Differential Equations of Motion 15.2 A Vertical Model 15.3 Solution of the Differential Equation 15.4 Step Input Forcing 15.5 Phase-Plane Representation 15.6 Phase-Plane Analysis 15.7 Transient Disturbances 15.8 Free Vibration with Viscous Damping 15.9 Damping Obtained by Experiment 15.10 Phase-Plane Representation of Damped Vibration 15.11 Response to Periodic Forcing 15.12 Harmonic Forcing 15.13 Forcing Caused by Unbalance 15.14 Relative Motion 15.15 Isolation 15.16 Rayleigh's Method 15.17 First and Second Critical Speeds of a Shaft 15.18 Torsional Systems Problems 16 Dynamics of Reciprocating Engines 16.1 Engine Types 16.2 Indicator Diagrams 16.3 Dynamic Analysis-General 16.4 Gas Forces 16.5 Equivalent Masses 16.6 Inertia Forces 16.7 Bearing Loads in a Single-Cylinder Engine 16.8 Crankshaft Torque 16.9 Shaking Forces of Engines 16.10 Computation Hints Problems 17 Balancing 17.1 Static Unbalance 17.2 Equations of Motion 17.3 Static Balancing Machines 17.4 Dynamic Unbalance 17.5 Analysis of Unbalance 17.6 Dynamic Balancing 17.7 Balancing Machines 17.8 Field Balancing with a Programmable Calculator 17.9 Balancing a Single-Cylinder Engine 17.10 Balancing Multi-Cylinder Engines 17.11 Analytical Technique for Balancing Multi-Cylinder Engines 17.12 Balancing Linkages 17.13 Balancing of Machines Problems 18 Cam Dynamics 18.1 Rigid- and Elastic-Body Cam Systems 18.2 Analysis of an Eccentric Cam 18.3 Effect of Sliding Friction 18.4 Analysis of Disk Cam with Reciprocating Roller Follower 18.5 Analysis of Elastic Cam Systems 18.6 Unbalance, Spring Surge, and Windup Problems 19 Flywheels, Governors, and Gyroscopes 19.1 Dynamic Theory of Flywheels 19.2 Integration Technique 19.3 Multi-Cylinder Engine Torque Summation 19.4 Classification of Governors 19.5 Centrifugal Governors 19.6 Inertia Governors 19.7 Mechanical Control Systems 19.8 Standard Input Functions 19.9 Solution of Linear Differential Equations 19.10 Analysis of Proportional-Error Feedback Systems 19.11 Introduction to Gyroscopes 19.12 The Motion of a Gyroscope 19.13 Steady or Regular Precession 19.14 Forced Precession Problems APPENDIXES Appendix A: Tables Table 1 Standard SI Prefixes Table 2 Conversion from US Customary Units to SI Units Table 3 Conversion from SI Units to US Customary Units Table 4 Properties of Areas Table 5 Mass Moments of Inertia Table 6 Involute Function Appendix B: Answers to Selected Problems Index
Summary: Theory of Machines and Mechanisms proporciona un texto para el estudio completo de desplazamientos, velocidades, aceleraciones y fuerzas estáticas y dinámicas requeridas para el diseño adecuado de conexiones mecánicas, cámaras y sistemas orientados. Los autores presentan los antecedentes, la notación y nomenclatura esencial para que los estudiantes comprendan los diversos enfoques técnicos independientes que existen en el campo de los mecanismos, la cinemática y la dinámica. Ahora completamente revisado en su cuarta edición, este texto es ideal para los estudiantes de pregrado o de postgrado de alto nivel en ingeniería mecánica que están tomando un curso en la cinemática y / o dinámica de la máquina.
List(s) this item appears in: CONEXIONES
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Vol info Copy number Status Date due Barcode Item holds
LIBRO - MATERIAL GENERAL LIBRO - MATERIAL GENERAL Biblioteca Jorge Álvarez Lleras
Fondo general
Acervo general de Libros 621.815 U424t 4a.ed. (Browse shelf) Ej. 1 1 Available 021750
CD-ROM /DVD-ROM / BLUERAY-ROM CD-ROM /DVD-ROM / BLUERAY-ROM Biblioteca Jorge Álvarez Lleras
Fondo general
Acervo general de Libros 621.815 U424t 4a.ed. (Browse shelf) Ej. 1 1 Available 021750DC
LIBRO - MATERIAL GENERAL LIBRO - MATERIAL GENERAL Biblioteca Jorge Álvarez Lleras
Fondo general
Colección / Fondo / Acervo / Resguardo 621.815 U424t 4a.ed. (Browse shelf) Ej. 2 2 Available 023607
CD-ROM /DVD-ROM / BLUERAY-ROM CD-ROM /DVD-ROM / BLUERAY-ROM Biblioteca Jorge Álvarez Lleras
Fondo general
Colección / Fondo / Acervo / Resguardo 621.815 U424t 4a.ed. (Browse shelf) Ej. 2 2 Available 023607DC
Total holds: 0

Incluye 1 CD

Incluye bibliografía al final de cada capítulo

Preface
About the Authors

Part 1 Kinematics and Mechanisms
1 The World of Mechanisms
1.1 Introduction
1.2 Analysis and Synthesis
1.3 The Science of Mechanics
1.4 Terminology, Definitions, and Assumptions
1.5 Planar, Spherical, and Spatial Mechanisms
1.6 Mobility
1.7 Classification of Mechanisms
1.8 Kinematic Inversion
1.9 Grashof's Law
1.10 Mechanical Advantage
Problems

2 Position and Displacement
2.1 Locus of a Moving Point
2.2 Position of a Point
2.3 Position Difference Between Two Points
2.4 Apparent Position of a Point
2.5 Absolute Position of a Point
2.6 The Loop-Closure Equation
2.7 Graphic Position Analysis
2.8 Algebraic Position Analysis
2.9 Complex-Algebra Solutions of Planar Vector Equations
2.10 Complex Polar Algebra
2.11 The Chace Solutions to Planar Vector Equations
2.12 Position Analysis Techniques
2.13 Coupler-Curve Generation
2.14 Displacement of a Moving Point
2.15 Displacement Difference Between Two Points
2.16 Rotation and Translation
2.17 Apparent Displacement
2.18 Absolute Displacement
2.19 Apparent Angular Displacement
Problems

3 Velocity
3.1 Definition of Velocity
3.2 Rotation of a Rigid Body
3.3 Velocity Difference Between Points of a Rigid Body
3.4 Graphic Methods; Velocity Polygons
3.5 Apparent Velocity of a Point in a Moving Coordinate System
3.6 Apparent Angular Velocity
3.7 Direct Contact and Rolling Contact
3.8 Systematic Strategy for Velocity Analysis
3.9 Analytic Methods
3.10 Complex-Algebra Methods
3.11 The Vector Method
3.12 The Method of Kinematic Coefficients
3.13 Instantaneous Center of Velocity
3.14 The Aronhold-Kennedy Theorem of Three Centers
3.15 Locating Instant Centers of Velocity
3.16 Velocity Analysis Using Instant Centers
3.17 The Angular Velocity Ratio Theorem
3.18 Relationships Between First-Order Kinematic Coefficients and Instant Centers
3.19 Freudenstein's Theorem
3.20 Indices of Merit; Mechanical Advantage
3.21 Centrodes
Problems

4 Acceleration
4.1 Definition of Acceleration
4.2 Angular Acceleration
4.3 Acceleration Difference Between Points of a Rigid Body
4.4 Acceleration Polygons
4.5 Apparent Acceleration of a Point in a Moving Coordinate System
4.6 Apparent Angular Acceleration
4.7 Direct Contact and Rolling Contact
4.8 Systematic Strategy for Acceleration Analysis
4.9 Analytic Methods
4.10 Complex-Algebra Methods
4.11 The Chace Solutions
4.12 The Method of Kinematic Coefficients
4.13 The Euler-Savary Equation
4.14 The Bobillier Constructions
4.15 The Instant Center of Acceleration
4.16 The Bresse Circle (or de La Hire Circle)
4.17 Radius of Curvature of Point Trajectory Using Kinematic Coefficients
4.18 The Cubic of Stationary Curvature
Problems

5 Multi-Degree-of-Freedom Planar Linkages
5.1 Introduction
5.2 Position Analysis; Algebraic Solution
5.3 Graphic Methods; Velocity Polygons
5.4 Instant Centers of Velocity
5.5 First-Order Kinematic Coefficients
5.6 The Method of Superposition
5.7 Graphic Method; Acceleration Polygons
5.8 Second-Order Kinematic Coefficients
5.9 Path Curvature of a Coupler Point
5.10 The Finite Difference Method
Problems

Part 2 Design of Mechanisms

6 Cam Design
6.1 Introduction
6.2 Classification of Cams and Followers
6.3 Displacement Diagrams
6.4 Graphical Layout of Cam Profiles
6.5 Kinematic Coefficients of the Follower Motion
6.6 High-Speed Cams
6.7 Standard Cam Motions
6.8 Matching Derivatives of Displacement Diagrams
6.9 Plate Cam with Reciprocating Flat-Face Follower
6.10 Plate Cam with Reciprocating Roller Follower
Problems

7 Spur Gears
7.1 Terminology and Definitions
7.2 Fundamental Law of Toothed Gearing
7.3 Involute Properties
7.4 Interchangeable Gears; AGMA Standards
7.5 Fundamentals of Gear-Tooth Action
7.6 The Manufacture of Gear Teeth
7.7 Interference and Undercutting
7.8 Contact Ratio
7.9 Varying the Center Distance
7.10 Involutometry
7.11 Nonstandard Gear Teeth
Problems

8 Helical Gears, Bevel Gears, Worms and Worm Gears
8.1 Parallel-Axis Helical Gears
8.2 Helical Gear Tooth Relations
8.3 Helical Gear Tooth Proportions
8.4 Contact of Helical Gear Teeth
8.5 Replacing Spur Gears with Helical Gears
8.6 Herringbone Gears
8.7 Crossed-Axis Helical Gears
8.8 Straight-Tooth Bevel Gears
8.9 Tooth Proportions for Bevel Gears
8.10 Crown and Face Gears
8.11 Spiral Bevel Gears
8.12 Hypoid Gears
8.13 Worms and Worm Gears
Problems

9 Mechanism Trains
9.1 Parallel-Axis Gear Trains
9.2 Examples of Gear Trains
9.3 Determining Tooth Numbers
9.4 Epicyclic Gear Trains
9.5 Bevel Gear Epicyclic Trains
9.6 Analysis of Epicyclic Gear Trains by Formula
9.7 Tabular Analysis of Epicyclic Gear Trains
9.8 Summers and Differentials
9.9 All Wheel Drive Train
Problems

10 Synthesis of Linkages
10.1 Type, Number, and Dimensional Synthesis
10.2 Function Generation, Path Generation, and Body Guidance
10.3 Two Finitely Separated Positions of a Rigid Body (N = 2)
10.4 Three Finitely Separated Positions of a Rigid Body (N = 3)
10.5 Four Finitely Separated Positions of a Rigid Body (N = 4)
10.6 Five Finitely Separated Positions of a Rigid Body (N = 5)
10.7 Precision Positions; Structural Error; Chebychev Spacing
10.8 The Overlay Method
10.9 Coupler-Curve Synthesis
10.10 Cognate Linkages; The Roberts-Chebychev Theorem
10.11 Freudenstein's Equation
10.12 Analytic Synthesis Using Complex Algebra
10.13 Synthesis of Dwell Mechanisms
10.14 Intermittent Rotary Motion
Problems

11 Spatial Mechanisms
11.1 Introduction
11.2 Exceptions to the Mobility of Mechanisms
11.3 The Spatial Position-Analysis Problem
11.4 Spatial Velocity and Acceleration Analyses
11.5 Euler Angles
11.6 The Denavit-Hartenberg Parameters
11.7 Transformation-Matrix Position Analysis
11.8 Matrix Velocity and Acceleration Analyses
11.9 Generalized Mechanism Analysis Computer Programs
Problems

12 Robotics
12.1 Introduction
12.2 Topological Arrangements of Robotic Arms
12.3 Forward Kinematics
12.4 Inverse Position Analysis
12.5 Inverse Velocity and Acceleration Analyses
12.6 Robot Actuator Force Analysis
Problems

Part 3 Dynamics of Machines

13 Static Force Analysis
13.1 Introduction
13.2 Newton's Laws
13.3 Systems of Units
13.4 Applied and Constraint Forces
13.5 Free-Body Diagrams
13.6 Conditions for Equilibrium
13.7 Two- and Three-Force Members
13.8 Four-Force Members
13.9 Friction-Force Models
13.10 Static Force Analysis with Friction
13.11 Spur- and Helical-Gear Force Analysis
13.12 Straight-Tooth-Bevel-Gear Force Analysis
13.13 The Method of Virtual Work
13.14 Euler Column Formula
13.15 The Critical Unit Load
13.16 Critical Unit Load and the Slenderness Ratio
13.17 The Johnson Parabolic Equation
Problems

14 Dynamic Force Analysis
14.1 Introduction
14.2 Centroid and Center of Mass
14.3 Mass Moments and Products of Inertia
14.4 Inertia Forces and D'Alembert's Principle
14.5 The Principle of Superposition
14.6 Planar Rotation about a Fixed Center
14.7 Shaking Forces and Moments
14.8 Complex Algebra Approach
14.9 Equation of Motion From Power Equation
14.10 Measuring Mass Moment of Inertia
14.11 Transformation of Inertia Axes
14.12 Euler's Equations of Motion
14.13 Impulse and Momentum
14.14 Angular Impulse and Angular Momentum
Problems

15 Vibration Analysis
15.1 Differential Equations of Motion
15.2 A Vertical Model
15.3 Solution of the Differential Equation
15.4 Step Input Forcing
15.5 Phase-Plane Representation
15.6 Phase-Plane Analysis
15.7 Transient Disturbances
15.8 Free Vibration with Viscous Damping
15.9 Damping Obtained by Experiment
15.10 Phase-Plane Representation of Damped Vibration
15.11 Response to Periodic Forcing
15.12 Harmonic Forcing
15.13 Forcing Caused by Unbalance
15.14 Relative Motion
15.15 Isolation
15.16 Rayleigh's Method
15.17 First and Second Critical Speeds of a Shaft
15.18 Torsional Systems
Problems

16 Dynamics of Reciprocating Engines
16.1 Engine Types
16.2 Indicator Diagrams
16.3 Dynamic Analysis-General
16.4 Gas Forces
16.5 Equivalent Masses
16.6 Inertia Forces
16.7 Bearing Loads in a Single-Cylinder Engine
16.8 Crankshaft Torque
16.9 Shaking Forces of Engines
16.10 Computation Hints
Problems
17 Balancing
17.1 Static Unbalance
17.2 Equations of Motion
17.3 Static Balancing Machines
17.4 Dynamic Unbalance
17.5 Analysis of Unbalance
17.6 Dynamic Balancing
17.7 Balancing Machines
17.8 Field Balancing with a Programmable Calculator
17.9 Balancing a Single-Cylinder Engine
17.10 Balancing Multi-Cylinder Engines
17.11 Analytical Technique for Balancing Multi-Cylinder Engines
17.12 Balancing Linkages
17.13 Balancing of Machines
Problems

18 Cam Dynamics
18.1 Rigid- and Elastic-Body Cam Systems
18.2 Analysis of an Eccentric Cam
18.3 Effect of Sliding Friction
18.4 Analysis of Disk Cam with Reciprocating Roller Follower
18.5 Analysis of Elastic Cam Systems
18.6 Unbalance, Spring Surge, and Windup
Problems

19 Flywheels, Governors, and Gyroscopes
19.1 Dynamic Theory of Flywheels
19.2 Integration Technique
19.3 Multi-Cylinder Engine Torque Summation
19.4 Classification of Governors
19.5 Centrifugal Governors
19.6 Inertia Governors
19.7 Mechanical Control Systems
19.8 Standard Input Functions
19.9 Solution of Linear Differential Equations
19.10 Analysis of Proportional-Error Feedback Systems
19.11 Introduction to Gyroscopes
19.12 The Motion of a Gyroscope
19.13 Steady or Regular Precession
19.14 Forced Precession
Problems

APPENDIXES
Appendix A: Tables
Table 1 Standard SI Prefixes
Table 2 Conversion from US Customary Units to SI Units
Table 3 Conversion from SI Units to US Customary Units
Table 4 Properties of Areas
Table 5 Mass Moments of Inertia
Table 6 Involute Function
Appendix B: Answers to Selected Problems
Index

Theory of Machines and Mechanisms proporciona un texto para el estudio completo de desplazamientos, velocidades, aceleraciones y fuerzas estáticas y dinámicas requeridas para el diseño adecuado de conexiones mecánicas, cámaras y sistemas orientados. Los autores presentan los antecedentes, la notación y nomenclatura esencial para que los estudiantes comprendan los diversos enfoques técnicos independientes que existen en el campo de los mecanismos, la cinemática y la dinámica.
Ahora completamente revisado en su cuarta edición, este texto es ideal para los estudiantes de pregrado o de postgrado de alto nivel en ingeniería mecánica que están tomando un curso en la cinemática y / o dinámica de la máquina.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer