Membrane Reactors for Hydrogen Production Processes [electronic resource] / edited by Marcello De Falco, Luigi Marrelli, Gaetano Iaquaniello.

Colaborador(es): De Falco, Marcello | [editor.] | Marrelli, Luigi | [editor.] | Iaquaniello, Gaetano | [editor.] | SpringerLink (Online service)Tipo de material: TextoTextoDescripción: XII, 235 p. 111 illus. online resourceISBN: 9780857291516 99780857291516Tema(s): Engineering | Engineering | INDUSTRIAL ENGINEERING | CHEMICAL ENGINEERING | INDUSTRIAL AND PRODUCTION ENGINEERING | INDUSTRIAL CHEMISTRY, CHEMICAL ENGINEERINGClasificación CDD: 670 Recursos en línea: ir a documento
Contenidos:
1. Integration of Selective Membranes in Chemical Processes: Benefits and Examples -- 2. Pd-based Selective Membrane State-of-the art -- 3. Hydrogen Palladium Selective Membranes: An Economic Perspective -- 4. Membrane Reactors Modeling -- 5. Membrane Integration in Natural Gas Steam Reforming -- 6. Autothermal Reforming Case Study -- 7. Technical and Economical Evaluation of WGS Reaction -- 8. Membrane Assisted Catalytic Decomposition of Hydrogen Sulphide -- 9. Alkanes Dehydrogenation -- 10. Steam Reforming of Natural Gas in a Reformer and Membrane Modules Test Plant. Plant Design Criteria and Operating Experience -- 11. Future Perspectives.
Resumen: Membrane Reactors for Hydrogen Production Processes deals with technological and economic aspects of hydrogen selective membranes application in hydrogen production chemical processes. Membrane Reactors for Hydrogen Production Processes starts with an overview of membrane integration in the chemical reaction environment, formulating the thermodynamics and kinetics of membrane reactors and assessing the performance of different process architectures. Then, the state of the art of hydrogen selective membranes, membrane manufacturing processes and the mathematical modeling of membrane reactors are discussed. A review of the most useful applications from an industrial point of view is given. These applications include: natural gas steam reforming, autothermal reforming, water gas shift reaction, decomposition of hydrogen sulphide, and alkanes dehydrogenation. The final part is dedicated to the description of a pilot plant where the novel configuration was implemented at a semi-industrial scale. Plant engineers, researchers and postgraduate students will find Membrane Reactors for Hydrogen Production Processes a comprehensive guide to the state of the art of membrane reactor technology.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Colección Signatura Info Vol Copia número Estado Fecha de vencimiento Código de barras Reserva de ítems
DOCUMENTOS DIGITALES DOCUMENTOS DIGITALES Biblioteca Jorge Álvarez Lleras
Digital 670 223 (Navegar estantería) Ej. 1 1 Disponible D000525
Total de reservas: 0

1. Integration of Selective Membranes in Chemical Processes: Benefits and Examples -- 2. Pd-based Selective Membrane State-of-the art -- 3. Hydrogen Palladium Selective Membranes: An Economic Perspective -- 4. Membrane Reactors Modeling -- 5. Membrane Integration in Natural Gas Steam Reforming -- 6. Autothermal Reforming Case Study -- 7. Technical and Economical Evaluation of WGS Reaction -- 8. Membrane Assisted Catalytic Decomposition of Hydrogen Sulphide -- 9. Alkanes Dehydrogenation -- 10. Steam Reforming of Natural Gas in a Reformer and Membrane Modules Test Plant. Plant Design Criteria and Operating Experience -- 11. Future Perspectives.

Membrane Reactors for Hydrogen Production Processes deals with technological and economic aspects of hydrogen selective membranes application in hydrogen production chemical processes. Membrane Reactors for Hydrogen Production Processes starts with an overview of membrane integration in the chemical reaction environment, formulating the thermodynamics and kinetics of membrane reactors and assessing the performance of different process architectures. Then, the state of the art of hydrogen selective membranes, membrane manufacturing processes and the mathematical modeling of membrane reactors are discussed. A review of the most useful applications from an industrial point of view is given. These applications include: natural gas steam reforming, autothermal reforming, water gas shift reaction, decomposition of hydrogen sulphide, and alkanes dehydrogenation. The final part is dedicated to the description of a pilot plant where the novel configuration was implemented at a semi-industrial scale. Plant engineers, researchers and postgraduate students will find Membrane Reactors for Hydrogen Production Processes a comprehensive guide to the state of the art of membrane reactor technology.

No hay comentarios en este titulo.

para colocar un comentario.