Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure [electronic resource] / by Henry W. Haslach Jr.

Por: Haslach Jr., Henry W [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoDescripción: XI, 312p. 50 illus. online resourceISBN: 9781441977656 99781441977656Tema(s): Engineering | Engineering | THERMODINAMICS | THERMODINAMICS | ENGINEERING THERMODYNAMICS, HEAT AND MASS TRANSFER | MECHANICAL ENGINEERING | MECHANICAL ENGINEERING | BIOMATERIALS | BIOMATERIALSClasificación CDD: 621.4021 Recursos en línea: ir a documento
Contenidos:
History of Non-Equilibrium Thermodynamics -- Energy Methods -- Evolution Construction for Homogeneous Thermodynamic Systems -- Viscoelasticity -- Viscoplasticity -- The Thermodynamic Relaxation Modulus as a Multi-scale Bridge from the Atomic Level to the Bulk Material -- Contact Geometric Structure for Non-equilibrium Thermodynamics. Bifurcations in the Generalized Energy Function -- Evolution Construction for Non-homogeneous Thermodynamic Systems -- Electromagnetism and Joule Heating -- Fracture.
Resumen: Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure explores the thermodynamics of non-equilibrium processes in materials. The book develops a general technique to construct nonlinear evolution equations describing non-equilibrium processes, while also developing a geometric context for non-equilibrium thermodynamics. Solid materials are the main focus in this volume, but the construction is shown to also apply to fluids. This volume also: Explains the theory behind a thermodynamically-consistent construction of non-linear evolution equations for non-equilibrium processes, based on supplementing the second law with a maximum dissipation criterion. Provides a geometric setting for non-equilibrium thermodynamics in differential topology and, in particular, contact structures that generalize Gibbs. Models processes that include thermoviscoelasticity, thermoviscoplasticity, thermoelectricity and dynamic fracture. Recovers several standard time-dependent constitutive models as maximum dissipation processes. Produces transport models that predict finite velocity of propagation. Emphasizes applications to the time-dependent modeling of soft biological tissue. Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure will be valuable for researchers, engineers and graduate students in non-equilibrium thermodynamics and the mathematical modeling of material behavior.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Colección Signatura Info Vol Copia número Estado Fecha de vencimiento Código de barras Reserva de ítems
DOCUMENTOS DIGITALES DOCUMENTOS DIGITALES Biblioteca Jorge Álvarez Lleras
Digital 621.4021 223 (Navegar estantería) Ej. 1 1 Disponible D000518
Total de reservas: 0

History of Non-Equilibrium Thermodynamics -- Energy Methods -- Evolution Construction for Homogeneous Thermodynamic Systems -- Viscoelasticity -- Viscoplasticity -- The Thermodynamic Relaxation Modulus as a Multi-scale Bridge from the Atomic Level to the Bulk Material -- Contact Geometric Structure for Non-equilibrium Thermodynamics. Bifurcations in the Generalized Energy Function -- Evolution Construction for Non-homogeneous Thermodynamic Systems -- Electromagnetism and Joule Heating -- Fracture.

Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure explores the thermodynamics of non-equilibrium processes in materials. The book develops a general technique to construct nonlinear evolution equations describing non-equilibrium processes, while also developing a geometric context for non-equilibrium thermodynamics. Solid materials are the main focus in this volume, but the construction is shown to also apply to fluids. This volume also: Explains the theory behind a thermodynamically-consistent construction of non-linear evolution equations for non-equilibrium processes, based on supplementing the second law with a maximum dissipation criterion. Provides a geometric setting for non-equilibrium thermodynamics in differential topology and, in particular, contact structures that generalize Gibbs. Models processes that include thermoviscoelasticity, thermoviscoplasticity, thermoelectricity and dynamic fracture. Recovers several standard time-dependent constitutive models as maximum dissipation processes. Produces transport models that predict finite velocity of propagation. Emphasizes applications to the time-dependent modeling of soft biological tissue. Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure will be valuable for researchers, engineers and graduate students in non-equilibrium thermodynamics and the mathematical modeling of material behavior.

No hay comentarios en este titulo.

para colocar un comentario.