Identification of Dynamic Systems [electronic resource]: An Introduction with Applications / by Rolf Isermann, Marco MAnchhof.

Por: Isermann, Rolf [author.]Colaborador(es): MAnchhof, Marco | [author.] | SpringerLink (Online service)Tipo de material: TextoTextoDescripción: XXV, 705 p. 268 illus. online resourceISBN: 9783540788799 99783540788799Tema(s): Engineering | Engineering | CALCULUS OF VARIATIONS AND OPTICALCONTROL, OBTIMIZATION | COMPLEXITY | PHYSICS | COMPUTER SIMULATION | SIMULATION AND MODELING | NUMERICAL AND COMPUTATIONAL PHYSICS | CONTROL, ROBOTICS, MECHATRONICSClasificación CDD: 629.8 Recursos en línea: ir a documento Resumen: Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators, machine tools, industrial robots, pumps, vehiclesá to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the nonparametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Colección Signatura Info Vol Copia número Estado Fecha de vencimiento Código de barras Reserva de ítems
DOCUMENTOS DIGITALES DOCUMENTOS DIGITALES Biblioteca Jorge Álvarez Lleras
Digital 629.8 223 (Navegar estantería) Ej. 1 1 Disponible D000432
Total de reservas: 0

Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators, machine tools, industrial robots, pumps, vehiclesá to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the nonparametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.

No hay comentarios en este titulo.

para colocar un comentario.