Biblioteca
Normal view MARC view ISBD view

A Probabilistic Framework for Point-Based Shape Modeling in Medical Image Analysis: [Electronic resource] / by Heike Hufnagel.

By: Hufnagel, Heike [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookDescription: XXIII, 147 p.: 53 illus. online resource.ISBN: 9783834886002 99783834886002.Subject(s): ENGINEERING | BIOCHEMICAL ENGINEERINGDDC classification: 610.28 Online resources: ir a documento Summary: In medical image analysis, major areas such as radiotherapy, surgery planning, and quantitative diagnostics benefit from shape modeling to facilitate solutions to analysis, segmentation and reconstruction problems. Heike Hufnagel proposes a mathematically sound statistical shape model using correspondence probabilities instead of 1-to-1 correspondences. The explicit probabilistic model is employed as shape prior in an implicit level set segmentation. Due to the particular attributes of the new model, the challenging integration of explicit and implicit representations can be done in an elegant mathematical formulation, thus combining the advantages of both explicit model and implicit segmentation. Evaluations are performed to depict the characteristics and strengths of the new model and segmentation method. The dissertation has received the Fokusfinder award 2011 by the Innovationsstiftung Schleswig-Holstein (ISH), the Basler AG and Philips Medical Systems.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Vol info Copy number Status Date due Barcode Item holds
DOCUMENTOS DIGITALES DOCUMENTOS DIGITALES Biblioteca Jorge Álvarez Lleras
Digital 610.28 223 (Browse shelf) Ej. 1 1 Available D000798
Total holds: 0

In medical image analysis, major areas such as radiotherapy, surgery planning, and quantitative diagnostics benefit from shape modeling to facilitate solutions to analysis, segmentation and reconstruction problems. Heike Hufnagel proposes a mathematically sound statistical shape model using correspondence probabilities instead of 1-to-1 correspondences. The explicit probabilistic model is employed as shape prior in an implicit level set segmentation. Due to the particular attributes of the new model, the challenging integration of explicit and implicit representations can be done in an elegant mathematical formulation, thus combining the advantages of both explicit model and implicit segmentation. Evaluations are performed to depict the characteristics and strengths of the new model and segmentation method. The dissertation has received the Fokusfinder award 2011 by the Innovationsstiftung Schleswig-Holstein (ISH), the Basler AG and Philips Medical Systems.

There are no comments for this item.

Log in to your account to post a comment.