VLSI Physical Design: From Graph Partitioning to Timing Closure [electronic resource] / by Andrew B. Kahng, Jens Lienig, Igor L. Markov, Jin Hu.

Por: Kahng, Andrew B [author.]Colaborador(es): Lienig, Jens | [author.] | Markov, Igor L | [author.] | Hu, Jin | [author.] | SpringerLink (Online service)Tipo de material: TextoTextoDescripción: XII, 310 p. 150 illus. online resourceISBN: 9789048195916 99789048195916Tema(s): Engineering | Engineering | COMPUTER, AIDED ENGINEERING (CAD, CAE) AND DESIGN | LOGIC DESIGN | LOGIC DESIGN | COMPUTER AIDED DESIGN | ELECTRONICS AND MICROELECTRONICS, INDTRUMENTATION | CIRCUITS AND SYSTEMS | ELECTRONICS | SYSTEMS ENGINEERINGClasificación CDD: 621.3815 Recursos en línea: ir a documento Resumen: Design and optimization of integrated circuits are essential to the creation of new semiconductor chips, and physical optimizations are becoming more prominent as a result of semiconductor scaling. Modern chip design has become so complex that it is largely performed by specialized software, which is frequently updated to address advances in semiconductor technologies and increased problem complexities. A user of such software needs a high-level understanding of the underlying mathematical models and algorithms. On the other hand, a developer of such software must have a keen understanding of computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. VLSI Physical Design: From Graph Partitioning to Timing Closure introduces and compares algorithms that are used during the physical design phase of integrated-circuit design, wherein a geometric chip layout is produced starting from an abstract circuit design. The emphasis is on essential and fundamental techniques, ranging from hypergraph partitioning and circuit placement to timing closure.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Colección Signatura Info Vol Copia número Estado Fecha de vencimiento Código de barras Reserva de ítems
DOCUMENTOS DIGITALES DOCUMENTOS DIGITALES Biblioteca Jorge Álvarez Lleras
Digital 621.3815 223 (Navegar estantería) Ej. 1 1 Disponible D000769
Total de reservas: 0

Design and optimization of integrated circuits are essential to the creation of new semiconductor chips, and physical optimizations are becoming more prominent as a result of semiconductor scaling. Modern chip design has become so complex that it is largely performed by specialized software, which is frequently updated to address advances in semiconductor technologies and increased problem complexities. A user of such software needs a high-level understanding of the underlying mathematical models and algorithms. On the other hand, a developer of such software must have a keen understanding of computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. VLSI Physical Design: From Graph Partitioning to Timing Closure introduces and compares algorithms that are used during the physical design phase of integrated-circuit design, wherein a geometric chip layout is produced starting from an abstract circuit design. The emphasis is on essential and fundamental techniques, ranging from hypergraph partitioning and circuit placement to timing closure.

No hay comentarios en este titulo.

para colocar un comentario.