Biblioteca
Normal view MARC view ISBD view

Road vehicle dynamics / Rao Dukkipati ... [et al.].

Material type: materialTypeLabelBookPublisher: Warrendale, Pennsylvania : SAE International, c2008Description: xxii, 852 p. : il. ; 29 cm.ISBN: 9780768016437 ; 0768016436 .Subject(s): AUTOMÓVILES -- DINAMICADDC classification: 629.231
Contents:
Foreword Preface Chapter 1 Introduction 1.1 General 1.2 Vehicle System Classification 1.3 Dynamic System 1.4 Classification of Dynamic System Models 1.5 Constraints, Generalized Coordinates, and Degrees of Freedom 1.6 Discrete and Continuous Systems 1.7 Vibration Analysis 1.8 Elements of Vibrating Systems 1.8.1 Spring Elements 1.8.2 Potential Energy of Linear Springs 1.8.3 Equivalent Springs 1.8.3.1 Springs in Parallel 1.8.3.2 Springs in Series 1.8.4 Mass or Inertia Elements 1.8.5 Damping Elements 1.8.5.1 Viscous Damping 1.8.5.2 Coulomb Damping 1.8.5.3 Structural or Hysteretic Damping 1.8.5.4 Combination of Damping Elements 1.9 Review of Dynamics 1.9.1 Newton?s Laws of Motion 1.9.2 Kinematics of Rigid Bodies 1.9.3 Linear Momentum 1.9.4 Principle of Conservation of Linear Momentum 1.9.5 Angular Momentum 1.9.6 Equations of Motion for a Rigid Body 1.9.7 Angular Momentum of a Rigid Body 1.9.8 Principle of Work and Energy 1.9.9 Conservation of Energy 1.9.10 Principle of Impulse and Momentum 1.9.11 Mechanical Systems 1.9.12 Translational Systems 1.9.13 Rotational Systems 1.9.14 Translation and Rotational Systems 1.9.15 Angular Momentum and Moments of Inertia 1.9.16 Geared Systems 1.10 Lagrange?s Equation 1.10.1 Degrees of Freedom 1.10.2 Generalized Coordinates 1.10.3 Constraints 1.10.4 Principle of Virtual Work 1.10.5 D? Alembert?s Principle 1.10.6 Generalized Force 1.10.7 Lagrange?s Equations of Motion 1.10.8 Holonomic Systems 1.10.9 Nonholonomic Systems 1.10.10 Rayleigh?s Dissipation Function 1.11 Summary 1.12 References 1.13 Problems Chapter 2 Analysis of Dynamic Systems 2.1 Introduction 2.2 Classification of Vibrations 2.3 Classification of Deterministic Data 2.3.1 Sinusoidal Periodic Data 2.3.2 Complex Periodic Data 2.3.3 Almost Periodic Data 2.3.4 Transient Nonperiodic Data 2.4 Linear Dynamic Systems 2.4.1 Linear Single-Degree-of-Freedom System 2.4.2 Free Vibrations of a Single-Degree-of-Freedom System 2.4.3 Forced Vibration of a Single-Degree-of-Freedom System 2.4.4 Linear Multiple-Degrees-of-Freedom System 2.4.5 Eigenvalues and Eigenvectors: Undamped System 2.4.6 Eigenvalues and Eigenvectors: Damped System 2.4.7 Forced Vibration Solution of a Multiple-Degrees-of-Freedom System 2.5 Nonlinear Dynamic Systems 2.5.1 Exact Methods for Nonlinear Systems 2.5.2 Approximate Methods for Nonlinear Systems 2.5.2.1 Iterative Method 2.5.2.2 Ritz Averaging Method 2.5.2.3 Perturbation Method 2.5.2.4 Variation of Parameter Method 2.5.3 Graphical Method 2.5.3.1 Phase Plane Representation 2.5.3.2 Phase Velocity 2.5.4 Multiple-Degrees-of-Freedom Systems 2.6 Random Vibrations 2.6.1 Probability Density Function 2.6.2 Autocorrelation Function 2.7 Gaussian Random Process 2.7.1 Fourier Analysis 2.7.1.1 Fourier Series 2.7.1.2 Fourier Integral 2.7.2 Response of a Single-Degree of Freedom Vibrating System 2.7.2.1 Impulse Response Method 2.7.2.2 Frequency Response Method 2.7.3 Power Spectral Density Function 2.7.4 Joint Probability Density Function 2.7.5 Cross-Correlation Function 2.7.6 Application of Power Spectral Densities to Vehicle Dynamics 2.7.7 Response of a Single-Degree-of-Freedom System to a Random Inputs 2.7.8 Response of a Multiple-Degrees-of-Freedom System to a Random Inputs 2.8 Summary 2.9 References 2.10 Problems Chapter 3 Tire Dynamics 3.1 Introduction 3.2 Vertical Dynamics of Tires 3.2.1 Vertical Stiffness and Damping Characteristics of Tires 3.2.2 Vertical Vibration Mechanics Models of Tires 3.2.2.1 Point Contact Model of Tires 3.2.2.2 Fixed Contact Patch Model of Tires 3.2.2.3 Time-Varying Contact Patch Model of Tires 3.2.3 Enveloping Characteristics of Tires 3.3 Tire Longitudinal Dynamics 3.3.1 Tire Rolling Resistance 3.3.2 Rolling Resistance of the Tire with Toe-In 3.3.3 Rolling Resistance of the Turning Wheel 3.3.4 Longitudinal Adhesion Coefficient 3.3.5 Theoretical Model of Tire Longitudinal Force Under Driving and Braking 3.4 Tire Lateral Dynamics 3.4.1 Tire Cornering Characteristics 3.4.2 Mathematical Model of the Tire Cornering Characteristic 3.4.2.1 Simplified Mathematical Model of the Tire Cornering Characteristic 3.4.2.2 Cornering Characteristic with Lateral Bending Deformation of the Tire Case 3.4.3 Rolling Properties of Tires 3.4.3.1 Cambered Tire Models 3.4.3.2 Cambered Tire Model with Roll Elastic Deformation of the Tire Carcass 3.5 Tire Mechanics Model Considering Longitudinal Slip and Cornering Characteristics 3.5.1 C.G. Gim Theoretical Model 3.5.2 K.H. Guo Tire Model 3.5.2.1 Steady-State Simplified Theoretical Tire Model 3.5.2.2 Nonsteady-State Semi-Empirical Tire Mechanics Model 3.5.3 H.B. Pacejka Magic Formula Model 3.6 Reference s 3.7 Problems Chapter 4 Ride Dynamics 4.1 Introduction 4.2 Vibration Environment in Road Vehicles 4.2.1 Vibration Sources from the Road 4.2.1.1 Power Spectral Density in Spatial Frequency 4.2.1.2 Power Spectral Density in Temporal Frequency 4.2.2 Vehicle Internal Vibration Sources 4.2.2.1 Vibration Sources from the Powerplant 4.2.2.1.1 Coordinates and Powerplant Modes 4.2.2.1.2 Vibration Sources from Engine Firing Pulsation 4.2.2.1.3 Vibration Sources from Powerplant Inertia Forces and Moments 4.2.2.1.4 Powerplant Isolation Design 4.2.2.2 Vibration Sources from the Driveline 4.2.2.2.1 Driveline Imbalance 4.2.2.2.2 Gear Transmission Error 4.2.2.2.3 Second Order Excitation 4.2.2.2.4 Driveshaft Modes and Driveline Modes 4.2.2.3 Vibration Sources from the Exhaust System 4.3 Vehicle Ride Models 4.3.1 Quarter Car Model 4.3.1.1 Modeling for the Quarter Car Model 4.3.1.2 Modal Analysis for the Quarter Car Model 4.3.1.3 Dynamic Analysis for the Quarter Car Model 4.3.1.3.1 Transmissibility Between the Body Response and Road Excitation 4.3.1.3.2 Transmissibility Between the Body Response and Vehicle Excitation 4.3.1.3.3 Dynamic Response at Random Input 4.3.2 Bounce-Pitch Model 4.3.3 Other Modeling 4.4 Seat Evaluation and Modeling 4.4.1 Introduction 4.4.2 SEAT Value 4.4.3 Seat Velocity 4.4.4 Linear Seat Modeling and Transmissibility 4.4.5 Nonlinear Seat Modeling and Transmissibility 4.5 Discomfort Evaluation and Human Body Model 4.5.1 Discomfort and Subjective Evaluation 4.5.2 Objective Evaluation of Ride Discomfort 4.5.2.1 Weight Root-Mean-Square Method 4.5.2.2 Objective Evaluation by the Vibration Dose Value 4.5.3 Linear Human Body Modeling 4.5.4 Objective Evaluation by Nonlinear Seat-Human Body Modeling 4.6 Active and Semi-Active Control 4.6.1 Introduction 4.6.2 Basic Control Concepts 4.6.3 Active Control 4.6.4 Semi-Active Control 4.7 Summary 4.8 References 4.9 Problems Chapter 5 Vehicle Rollover Analysis 5.1 Introduction 5.1.1 Rollover Scenario 5.1.2 Importance of Rollover 5.1.3 Research on Rollover 5.1.4 Scope of This Chapter 5.2 Rigid Vehicle Rollover Model 5.2.1 Rigid Vehicle Model 5.2.2 Steady-State Rollover on a Flat Road 5.2.3 Tilt Table Ratio (TTR) 5.2.4 Side Pull Ratio (SPR) 5.3 Suspended Vehicle Rollover Model 5.3.1 Steady-State Rollover Model for a Suspended Vehicle 5.3.2 Contribution from the Tire Deflection 5.3.3 Contribution from the Suspension Deflection 5.3.4 Parameters Influencing the Suspended Rollover Model 5.4 Dynamic Rollover Model 5.4.1 Rigid Dynamic Model 5.4.2 Dynamic Rollover Model for a Dependent Suspension Vehicle 5.4.3 Dynamic Rollover Model for an Independent Suspension Vehicle 5.4.4 Rollover Simulation Tools 5.5 Dynamic Rollover Threshold 5.5.1 Dynamic Stability Index 5.5.2 Rollover Prevention Energy Reserve 5.5.3 Rollover Prevention Metric 5.5.4 Critical Sliding Velocity 5.6 Occupant in Rollover 5.6.1 Overview of the Occupant and Rollover 5.6.2 Testing of an Occupant Model 5.6.3 Simulation of Occupant Rollover 5.7 Safety and Rollover Control 5.7.1 Overview of Rollover Safety 5.7.2 Sensing of Rollover 5.7.3 Rollover Safety Control 5.8 Summary 5.9 References 5.10 Problems Chapter 6 Handling Dynamics 6.1 Introduction 6.1.1 Tire Cornering Forces 6.1.2 Forces and Torques in the Tire Contact Area 6.2 The Simplest Handling Models?Two-Degrees-of-Freedom Yaw Plane Model 6.3 Steady-State Handling Characteristics 6.3.1 Yaw Velocity Gain and Understeer Gradient 6.3.1.1 Neutral Steer 6.3.1.2 Understeer 6.3.1.3 Oversteer 6.3.2 Difference Between Slip Angles of Front and Rear Wheels 6.3.3 Ratio of Radius of Turn 6.4 Dynamic Characteristics of Handling 6.4.1 Handling Damping and Natural Frequency 6.4.2 Step Steer Input Response 6.4.3 Ramp Steer Input Response 6.4.4 Impulse Input Excitation Response 6.4.5 Frequency Response of Yaw Velocity 6.4.6 Stability Analysis 6.4.7 Curvature Response 6.5 Chassis System Effects on Handling Characteristics 6.5.1 Lateral Force Transfer Effects on Cornering 6.5.2 Steering System 6.5.3 Camber Change Effect 6.5.4 Roll Steer Effect 6.5.5 Lateral Force Compliance Steer 6.5.6 Aligning Torque Effects 6.5.7 Effect of Tractive Forces on Cornering 6.6 Handling Safety?Overturning Limit Handling Characteristics 6.7 Nonlinear Models of Handling Dynamics 6.7.1 Multiple-Degree-of-Freedom System Models 6.7.2 An Eight-Degrees-of-Freedom System Model 6.8 Testing of Handling Characteristics 6.8.1 Constant Radius Test 6.8.2 Constant Speed Test 6.8.3 Constant Steer Angle Test 6.8.3.1 Dynamic Testing 6.8.3.2 Simulations and Testing Validation 6.9 Summary 6.10 References 6.11 Problems Chapter 7 Braking 7.1 Introduction 7.1.1 Types of Automotive Brakes 7.1.2 Braking Distance and Deceleration 7.2 Brake Torque Distribution 7.2.1 Drum Brakes 7.2.1.1 Mechanical Advantage 7.2.1.2 Torque Calculations 7.2.2 Disk Brakes 7.2.3 Consideration of Temperature 7.3 Load Transfer During Braking 7.3.1 Simple Braking on a Horizontal Road 7.3.2 Effect of Aerodynamic and Other Forces 7.3.2.1 Rolling Resistance 7.3.2.2 Aerodynamic Drag 7.3.2.3 Powertrain Resistance 7.3.2.4 Load Transfer on a Horizontal Plane 7.3.3 Effect of Grade 7.4 Optimal Braking Performance 7.4.1 Braking of a Single Axle 7.4.1.1 Braking of the Front Axle 7.4.1.2 Braking of the Rear Axle 7.4.1.3 Safety Considerations 7.4.2 Braking at Both Axles 7.4.2.1 Front Lock-Up 7.4.2.2 Rear Lock-Up 7.4.3 Optimal Braking Performance 7.5 Considerations of Vehicle Safety 7.5.1 Skid (Slip) Condition and Braking 7.5.2 Anti-Lock Braking System 7.6 Pitch Plane Models 7.7 Recent Advances in Automotive Braking 7.8 Summary 7.9 References 7.10 Problems Chapter 8 Acceleration 8.1 Introduction 8.1.1 Acceleration 8.2 Load Transfer During Acceleration 8.2.1 Simple Acceleration on a Horizontal Road 8.2.2 Effect of Aerodynamic and Other Forces 8.2.3 Effect of Grade 8.3 Traction-Limited Acceleration 8.3.1 Drivetrain Configurations 8.3.2 Front-Wheel Drive 8.3.3 Rear-Wheel Drive 8.3.4 All-Wheel-Drive and Four-by-Four Systems 8.3.4.1 Front Skid 8.3.4.2 Rear Skid 8.3.5 Optimal Tractive Effort 8.4 Power-Limited Acceleration 8.4.1 The Engine 8.4.2 Internal Combustion Engines 8.4.3 The Transmission 8.4.3.1 Manual Transmissions 8.4.3.2 Automatic Transmissions 8.4.3.3 Continuously Variable Transmissions 8.4.4 Vehicle Acceleration 8.5 Safety Features 8.5.1 Limited Slip Axle 8.5.2 Traction Control 8.6 Summary 8.7 References 8.8 Problems Chapter 9 Total Vehicle Dynamics 9.1 Introduction 9.1.1 Subjective and Objective Evaluations 9.1.2 Target Setting 9.1.3 Vehicle Dynamics Tests and Evaluations 9.1.3.1 Ride 9.1.3.2 Steering 9.1.3.3 Handling 9.1.3.4 Braking 9.1.3.5 Performance 9.2 Steering and Braking 9.2.1 Simple Braking and Steering on a Horizontal Road 9.2.2 Optimal Braking Performance Under Steering 9.2.2.1 Front Lock-Up 9.2.2.2 Rear Lock-Up 9.3 Steering and Acceleration 9.3.1 Simple Acceleration and Steering on a Horizontal Road 9.3.2 Optimal Acceleration Performance Under Steering 9.3.2.1 Front Skid 9.3.2.2 Rear Skid 9.4 Vehicle Critical Speed 9.5 Vehicle Stability 9.6 Summary 9.7 References 9.8 Problems Chapter 10 Accident Reconstruction 10.1 Introduction and Objectives 10.2 Basic Equations of Motion 10.3 Drag Factor and Coefficient of Friction 10.4 Work, Energy, and the Law of Conservation of Energy 10.5 Driver Perception and Response 10.6 Engineering Models and Animations 10.6.1 Function of Accident Scene Models 10.6.2 Model Application 10.6.3 Reconstruction Animations 10.7 Lane-Change Maneuver Model 10.8 Speed Estimates for Fall, Flip, or Vault 10.8.1 Fall 10.8.2 Flip 10.8.3 Vault 10.9 Speed Estimates from Yaw Marks 10.10 Impact Analysis 10.10.1 Straight Central Impact 10.10.2 Noncentral Collisions 10.10.3 Crush Energy and ?V 10.11 Vehicle?Pedestrian Collisions 10.11.1 Pedestrian Trajectories 10.11.2 Mathematical and Hybrid Models 10.12 Accident Reconstruction Software 10.12.1 Software Acronyms: REC-TEC with DRIVE3 and MSMACRT 10.12.2 VCRware 10.12.3 CRASHEX 10.12.4 AR Software 10.12.5 Engineering Dynamics Corporation (EDC) 10.12.6 Macinnis Engineering Associates (MEA) and MEA Forensic Engineerrs & Scientists 10.12.7 Maine Computer Group 10.12.8 McHenry Software, Inc. 10.12.9 Software Acronym: VDANL 10.12.10 Expert AutoStats??Vehicle Dimension-Weight-Performance Data 10.12.11 Other AR Software Sites 10.13 Low-Speed Sideswipe Collisions 10.13.1 Funk-Cormier-Bain Model 10.13.2 Modeling Procedure 10.14 Summary of Formulae Used in Accident Reconstruction 10.15 Summary 10.16 References 10.17 Problems Appendix A Vector Algebra A.1 Real and Complex Vectors A.2 Laws of Vector Operation A.3 Linear Dependence A.4 Three-Dimensional Vectors A.5 Properties of Scalar Product of Vectors A.6 Direction Angles A.7 Vector Product A.8 Derivative of a Vector A.9 References A.10 Problems Appendix B Matrix Analysis B.1 Introduction B.2 Definitions of Matrices B.3 Matrix Operations B.4 Matrix Inversion B.5 Determinants B.6 More on Matrix Inversion B.7 System of Algebraic Equations B.8 Eigenvalues and Eigenvectors B.9 Quadratic Forms B.10 Positive Definite Matrix B.11 Negative Definite Matrix B.12 Indefinite Matrix B.13 Norm of a Vector B.14 Partitioning of Matrices B.15 Augmented Matrix B.16 Matrix Calculus B.17 Summary B.18 References B.19 Problems B.20 Glossary of Terms Appendix C Laplace Transforms C.1 Laplace Transformation C.2 Existence of Laplace Transform C.3 Inverse Laplace Transform C.4 Properties of the Laplace Transform C.4.1 Multiplication by a Constant C.4.2 Sum and Difference C.5 Special Functions C.5.1 Exponential Function C.5.2 Step Function C.5.3 Ramp Function C.5.4 Pulse Function C.5.5 Impulse Function C.5.6 Dirac Delta Function C.5.7 Sinusoidal Function C.6 Multiplication of C.7 Differentiation C.8 Integration C.9 Final Value Theorem C.10 Initial Value Theorem C.11 Shift in Time C.12 Complex Shifting C.13 Real Convolution (Complex Multiplication) C.14 Inverse Laplace Transformation C.14.1 Partial Fraction Expansions C.14.2 Case I?Partial Fraction Expansion When Has Distinct Roots C.14.3 Case II?Partial Fraction Expansion When Has Complex Conjugate Roots C.14.4 Case III?Partial Fraction Expansion When Has Repeated Roots C.15 Solution of Differential Equations C.16 Summary C.17 References C.18 Problems Appendix D Glossary of Terms Appendix E Direct Numerical Integration Methods E.1 Introduction E.2 Single-Degree-of-Freedom System E.2.1 Finite Difference Method E.2.2 Central Difference Method E.2.3 Runge-Kutta Method E.3 Multiple-Degrees-of-Freedom System E.4 Explicit Schemes E.4.1 Central Difference Method E.4.2 Fourth-Order Runge-Kutta Method E.5 Implicit Schemes E.5.1 Houbolt Method E.5.2 Wilson-? Method E.5.3 Newmark-? Method E.6 Case Studies E.6.1 Linear Dynamic System E.6.2 Nonlinear Dynamic System E.7 Summary E.8 References Appendix F Units and Conversion F.1 The S.I. System of Units F.2 S.I. Units Prefixes F.3 S.I. Conversion F.4 References F.5 Problems Appendix G Accident Reconstruction Formulae G.1 Center of Mass G.2 Slide-to-a-Stop Speed G.3 Yaw, Sideslip, and Critical Curve Speed G.4 Combined Speeds G.5 360-Degree Momentum Speed Analysis G.6 Tip and Rollover Speed G.7 Weight Shift and Speed G.8 Kinetic Energy and Speed G.9 Fall, Slip, and Vault Speeds Bibliography List of Symbols Index About the Authors
Summary: Este libro ofrece un panorama detallado e integral de la dinámica de los sistemas de vehículos de carretera. Los lectores llegarán a entender cómo las leyes físicas, las consideraciones de factores humanos, y las opciones de diseño se unen para afectar paseo un vehículo s, manejo, frenado y aceleración. Tras una introducción y revisión general de la dinámica, los temas incluyen: análisis de sistemas dinámicos; la dinámica de los neumáticos; montar dinámica; análisis de vuelco del vehículo; dinámica de manejo; de frenado; aceleración; y la dinámica total de vehículos
List(s) this item appears in: PERT
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Vol info Copy number Status Date due Barcode Item holds
LIBRO - MATERIAL GENERAL LIBRO - MATERIAL GENERAL Biblioteca Jorge Álvarez Lleras
Fondo general
Colección / Fondo / Acervo / Resguardo 629.231 R628 (Browse shelf) Ej. 1 1 Available 023394
LIBRO - MATERIAL GENERAL LIBRO - MATERIAL GENERAL Biblioteca Jorge Álvarez Lleras
Fondo general
Colección / Fondo / Acervo / Resguardo 629.231 R628 (Browse shelf) Ej. 2 2 Available 023395
Total holds: 0

Ejempar 2: Problemas y soluciones

Incluye Bibliografía e indices

Foreword
Preface
Chapter 1 Introduction
1.1 General
1.2 Vehicle System Classification
1.3 Dynamic System
1.4 Classification of Dynamic System Models
1.5 Constraints, Generalized Coordinates, and Degrees of Freedom
1.6 Discrete and Continuous Systems
1.7 Vibration Analysis
1.8 Elements of Vibrating Systems
1.8.1 Spring Elements
1.8.2 Potential Energy of Linear Springs
1.8.3 Equivalent Springs
1.8.3.1 Springs in Parallel
1.8.3.2 Springs in Series
1.8.4 Mass or Inertia Elements
1.8.5 Damping Elements
1.8.5.1 Viscous Damping
1.8.5.2 Coulomb Damping
1.8.5.3 Structural or Hysteretic Damping
1.8.5.4 Combination of Damping Elements
1.9 Review of Dynamics
1.9.1 Newton?s Laws of Motion
1.9.2 Kinematics of Rigid Bodies
1.9.3 Linear Momentum
1.9.4 Principle of Conservation of Linear Momentum
1.9.5 Angular Momentum
1.9.6 Equations of Motion for a Rigid Body
1.9.7 Angular Momentum of a Rigid Body
1.9.8 Principle of Work and Energy
1.9.9 Conservation of Energy
1.9.10 Principle of Impulse and Momentum
1.9.11 Mechanical Systems
1.9.12 Translational Systems
1.9.13 Rotational Systems
1.9.14 Translation and Rotational Systems
1.9.15 Angular Momentum and Moments of Inertia
1.9.16 Geared Systems
1.10 Lagrange?s Equation
1.10.1 Degrees of Freedom
1.10.2 Generalized Coordinates
1.10.3 Constraints
1.10.4 Principle of Virtual Work
1.10.5 D? Alembert?s Principle
1.10.6 Generalized Force
1.10.7 Lagrange?s Equations of Motion
1.10.8 Holonomic Systems
1.10.9 Nonholonomic Systems
1.10.10 Rayleigh?s Dissipation Function
1.11 Summary
1.12 References
1.13 Problems
Chapter 2 Analysis of Dynamic Systems
2.1 Introduction
2.2 Classification of Vibrations
2.3 Classification of Deterministic Data
2.3.1 Sinusoidal Periodic Data
2.3.2 Complex Periodic Data
2.3.3 Almost Periodic Data
2.3.4 Transient Nonperiodic Data
2.4 Linear Dynamic Systems
2.4.1 Linear Single-Degree-of-Freedom System
2.4.2 Free Vibrations of a Single-Degree-of-Freedom System
2.4.3 Forced Vibration of a Single-Degree-of-Freedom System
2.4.4 Linear Multiple-Degrees-of-Freedom System
2.4.5 Eigenvalues and Eigenvectors: Undamped System
2.4.6 Eigenvalues and Eigenvectors: Damped System
2.4.7 Forced Vibration Solution of a Multiple-Degrees-of-Freedom
System
2.5 Nonlinear Dynamic Systems
2.5.1 Exact Methods for Nonlinear Systems
2.5.2 Approximate Methods for Nonlinear Systems
2.5.2.1 Iterative Method
2.5.2.2 Ritz Averaging Method
2.5.2.3 Perturbation Method
2.5.2.4 Variation of Parameter Method
2.5.3 Graphical Method
2.5.3.1 Phase Plane Representation
2.5.3.2 Phase Velocity
2.5.4 Multiple-Degrees-of-Freedom Systems
2.6 Random Vibrations
2.6.1 Probability Density Function
2.6.2 Autocorrelation Function
2.7 Gaussian Random Process
2.7.1 Fourier Analysis
2.7.1.1 Fourier Series
2.7.1.2 Fourier Integral
2.7.2 Response of a Single-Degree of Freedom Vibrating System
2.7.2.1 Impulse Response Method
2.7.2.2 Frequency Response Method
2.7.3 Power Spectral Density Function
2.7.4 Joint Probability Density Function
2.7.5 Cross-Correlation Function
2.7.6 Application of Power Spectral Densities to Vehicle Dynamics
2.7.7 Response of a Single-Degree-of-Freedom System to a
Random Inputs
2.7.8 Response of a Multiple-Degrees-of-Freedom System to a
Random Inputs
2.8 Summary
2.9 References
2.10 Problems
Chapter 3 Tire Dynamics
3.1 Introduction
3.2 Vertical Dynamics of Tires
3.2.1 Vertical Stiffness and Damping Characteristics of Tires
3.2.2 Vertical Vibration Mechanics Models of Tires
3.2.2.1 Point Contact Model of Tires
3.2.2.2 Fixed Contact Patch Model of Tires
3.2.2.3 Time-Varying Contact Patch Model of Tires
3.2.3 Enveloping Characteristics of Tires
3.3 Tire Longitudinal Dynamics
3.3.1 Tire Rolling Resistance
3.3.2 Rolling Resistance of the Tire with Toe-In
3.3.3 Rolling Resistance of the Turning Wheel
3.3.4 Longitudinal Adhesion Coefficient
3.3.5 Theoretical Model of Tire Longitudinal Force Under
Driving and Braking
3.4 Tire Lateral Dynamics
3.4.1 Tire Cornering Characteristics
3.4.2 Mathematical Model of the Tire Cornering Characteristic
3.4.2.1 Simplified Mathematical Model of the Tire
Cornering Characteristic
3.4.2.2 Cornering Characteristic with Lateral Bending
Deformation of the Tire Case
3.4.3 Rolling Properties of Tires
3.4.3.1 Cambered Tire Models
3.4.3.2 Cambered Tire Model with Roll Elastic
Deformation of the Tire Carcass
3.5 Tire Mechanics Model Considering Longitudinal Slip and Cornering
Characteristics
3.5.1 C.G. Gim Theoretical Model
3.5.2 K.H. Guo Tire Model
3.5.2.1 Steady-State Simplified Theoretical Tire Model
3.5.2.2 Nonsteady-State Semi-Empirical Tire Mechanics
Model
3.5.3 H.B. Pacejka Magic Formula Model
3.6 Reference s
3.7 Problems
Chapter 4 Ride Dynamics
4.1 Introduction
4.2 Vibration Environment in Road Vehicles
4.2.1 Vibration Sources from the Road
4.2.1.1 Power Spectral Density in Spatial Frequency
4.2.1.2 Power Spectral Density in Temporal Frequency
4.2.2 Vehicle Internal Vibration Sources
4.2.2.1 Vibration Sources from the Powerplant
4.2.2.1.1 Coordinates and Powerplant Modes
4.2.2.1.2 Vibration Sources from Engine Firing
Pulsation
4.2.2.1.3 Vibration Sources from Powerplant Inertia
Forces and Moments
4.2.2.1.4 Powerplant Isolation Design
4.2.2.2 Vibration Sources from the Driveline
4.2.2.2.1 Driveline Imbalance
4.2.2.2.2 Gear Transmission Error
4.2.2.2.3 Second Order Excitation
4.2.2.2.4 Driveshaft Modes and Driveline Modes
4.2.2.3 Vibration Sources from the Exhaust System
4.3 Vehicle Ride Models
4.3.1 Quarter Car Model
4.3.1.1 Modeling for the Quarter Car Model
4.3.1.2 Modal Analysis for the Quarter Car Model
4.3.1.3 Dynamic Analysis for the Quarter Car Model
4.3.1.3.1 Transmissibility Between the Body
Response and Road Excitation
4.3.1.3.2 Transmissibility Between the Body
Response and Vehicle Excitation
4.3.1.3.3 Dynamic Response at Random Input
4.3.2 Bounce-Pitch Model
4.3.3 Other Modeling
4.4 Seat Evaluation and Modeling
4.4.1 Introduction
4.4.2 SEAT Value
4.4.3 Seat Velocity
4.4.4 Linear Seat Modeling and Transmissibility
4.4.5 Nonlinear Seat Modeling and Transmissibility
4.5 Discomfort Evaluation and Human Body Model
4.5.1 Discomfort and Subjective Evaluation
4.5.2 Objective Evaluation of Ride Discomfort
4.5.2.1 Weight Root-Mean-Square Method
4.5.2.2 Objective Evaluation by the Vibration Dose Value
4.5.3 Linear Human Body Modeling
4.5.4 Objective Evaluation by Nonlinear Seat-Human Body
Modeling
4.6 Active and Semi-Active Control
4.6.1 Introduction
4.6.2 Basic Control Concepts
4.6.3 Active Control
4.6.4 Semi-Active Control
4.7 Summary
4.8 References
4.9 Problems
Chapter 5 Vehicle Rollover Analysis
5.1 Introduction
5.1.1 Rollover Scenario
5.1.2 Importance of Rollover
5.1.3 Research on Rollover
5.1.4 Scope of This Chapter
5.2 Rigid Vehicle Rollover Model
5.2.1 Rigid Vehicle Model
5.2.2 Steady-State Rollover on a Flat Road
5.2.3 Tilt Table Ratio (TTR)
5.2.4 Side Pull Ratio (SPR)
5.3 Suspended Vehicle Rollover Model
5.3.1 Steady-State Rollover Model for a Suspended Vehicle
5.3.2 Contribution from the Tire Deflection
5.3.3 Contribution from the Suspension Deflection
5.3.4 Parameters Influencing the Suspended Rollover Model
5.4 Dynamic Rollover Model
5.4.1 Rigid Dynamic Model
5.4.2 Dynamic Rollover Model for a Dependent Suspension
Vehicle
5.4.3 Dynamic Rollover Model for an Independent Suspension
Vehicle
5.4.4 Rollover Simulation Tools
5.5 Dynamic Rollover Threshold
5.5.1 Dynamic Stability Index
5.5.2 Rollover Prevention Energy Reserve
5.5.3 Rollover Prevention Metric
5.5.4 Critical Sliding Velocity
5.6 Occupant in Rollover
5.6.1 Overview of the Occupant and Rollover
5.6.2 Testing of an Occupant Model
5.6.3 Simulation of Occupant Rollover
5.7 Safety and Rollover Control
5.7.1 Overview of Rollover Safety
5.7.2 Sensing of Rollover
5.7.3 Rollover Safety Control
5.8 Summary
5.9 References
5.10 Problems
Chapter 6 Handling Dynamics
6.1 Introduction
6.1.1 Tire Cornering Forces
6.1.2 Forces and Torques in the Tire Contact Area
6.2 The Simplest Handling Models?Two-Degrees-of-Freedom
Yaw Plane Model
6.3 Steady-State Handling Characteristics
6.3.1 Yaw Velocity Gain and Understeer Gradient
6.3.1.1 Neutral Steer
6.3.1.2 Understeer
6.3.1.3 Oversteer
6.3.2 Difference Between Slip Angles of Front and Rear Wheels
6.3.3 Ratio of Radius of Turn
6.4 Dynamic Characteristics of Handling
6.4.1 Handling Damping and Natural Frequency
6.4.2 Step Steer Input Response
6.4.3 Ramp Steer Input Response
6.4.4 Impulse Input Excitation Response
6.4.5 Frequency Response of Yaw Velocity
6.4.6 Stability Analysis
6.4.7 Curvature Response
6.5 Chassis System Effects on Handling Characteristics
6.5.1 Lateral Force Transfer Effects on Cornering
6.5.2 Steering System
6.5.3 Camber Change Effect
6.5.4 Roll Steer Effect
6.5.5 Lateral Force Compliance Steer
6.5.6 Aligning Torque Effects
6.5.7 Effect of Tractive Forces on Cornering
6.6 Handling Safety?Overturning Limit Handling Characteristics
6.7 Nonlinear Models of Handling Dynamics
6.7.1 Multiple-Degree-of-Freedom System Models
6.7.2 An Eight-Degrees-of-Freedom System Model
6.8 Testing of Handling Characteristics
6.8.1 Constant Radius Test
6.8.2 Constant Speed Test
6.8.3 Constant Steer Angle Test
6.8.3.1 Dynamic Testing
6.8.3.2 Simulations and Testing Validation
6.9 Summary
6.10 References
6.11 Problems
Chapter 7 Braking
7.1 Introduction
7.1.1 Types of Automotive Brakes
7.1.2 Braking Distance and Deceleration
7.2 Brake Torque Distribution
7.2.1 Drum Brakes
7.2.1.1 Mechanical Advantage
7.2.1.2 Torque Calculations
7.2.2 Disk Brakes
7.2.3 Consideration of Temperature
7.3 Load Transfer During Braking
7.3.1 Simple Braking on a Horizontal Road
7.3.2 Effect of Aerodynamic and Other Forces
7.3.2.1 Rolling Resistance
7.3.2.2 Aerodynamic Drag
7.3.2.3 Powertrain Resistance
7.3.2.4 Load Transfer on a Horizontal Plane
7.3.3 Effect of Grade
7.4 Optimal Braking Performance
7.4.1 Braking of a Single Axle
7.4.1.1 Braking of the Front Axle
7.4.1.2 Braking of the Rear Axle
7.4.1.3 Safety Considerations
7.4.2 Braking at Both Axles
7.4.2.1 Front Lock-Up
7.4.2.2 Rear Lock-Up
7.4.3 Optimal Braking Performance
7.5 Considerations of Vehicle Safety
7.5.1 Skid (Slip) Condition and Braking
7.5.2 Anti-Lock Braking System
7.6 Pitch Plane Models
7.7 Recent Advances in Automotive Braking
7.8 Summary
7.9 References
7.10 Problems
Chapter 8 Acceleration
8.1 Introduction
8.1.1 Acceleration
8.2 Load Transfer During Acceleration
8.2.1 Simple Acceleration on a Horizontal Road
8.2.2 Effect of Aerodynamic and Other Forces
8.2.3 Effect of Grade
8.3 Traction-Limited Acceleration
8.3.1 Drivetrain Configurations
8.3.2 Front-Wheel Drive
8.3.3 Rear-Wheel Drive
8.3.4 All-Wheel-Drive and Four-by-Four Systems
8.3.4.1 Front Skid
8.3.4.2 Rear Skid
8.3.5 Optimal Tractive Effort
8.4 Power-Limited Acceleration
8.4.1 The Engine
8.4.2 Internal Combustion Engines
8.4.3 The Transmission
8.4.3.1 Manual Transmissions
8.4.3.2 Automatic Transmissions
8.4.3.3 Continuously Variable Transmissions
8.4.4 Vehicle Acceleration
8.5 Safety Features
8.5.1 Limited Slip Axle
8.5.2 Traction Control
8.6 Summary
8.7 References
8.8 Problems
Chapter 9 Total Vehicle Dynamics
9.1 Introduction
9.1.1 Subjective and Objective Evaluations
9.1.2 Target Setting
9.1.3 Vehicle Dynamics Tests and Evaluations
9.1.3.1 Ride
9.1.3.2 Steering
9.1.3.3 Handling
9.1.3.4 Braking
9.1.3.5 Performance
9.2 Steering and Braking
9.2.1 Simple Braking and Steering on a Horizontal Road
9.2.2 Optimal Braking Performance Under Steering
9.2.2.1 Front Lock-Up
9.2.2.2 Rear Lock-Up
9.3 Steering and Acceleration
9.3.1 Simple Acceleration and Steering on a Horizontal Road
9.3.2 Optimal Acceleration Performance Under Steering
9.3.2.1 Front Skid
9.3.2.2 Rear Skid
9.4 Vehicle Critical Speed
9.5 Vehicle Stability
9.6 Summary
9.7 References
9.8 Problems
Chapter 10 Accident Reconstruction
10.1 Introduction and Objectives
10.2 Basic Equations of Motion
10.3 Drag Factor and Coefficient of Friction
10.4 Work, Energy, and the Law of Conservation of Energy
10.5 Driver Perception and Response
10.6 Engineering Models and Animations
10.6.1 Function of Accident Scene Models
10.6.2 Model Application
10.6.3 Reconstruction Animations
10.7 Lane-Change Maneuver Model
10.8 Speed Estimates for Fall, Flip, or Vault
10.8.1 Fall
10.8.2 Flip
10.8.3 Vault
10.9 Speed Estimates from Yaw Marks
10.10 Impact Analysis
10.10.1 Straight Central Impact
10.10.2 Noncentral Collisions
10.10.3 Crush Energy and ?V
10.11 Vehicle?Pedestrian Collisions
10.11.1 Pedestrian Trajectories
10.11.2 Mathematical and Hybrid Models
10.12 Accident Reconstruction Software
10.12.1 Software Acronyms: REC-TEC with DRIVE3 and MSMACRT
10.12.2 VCRware
10.12.3 CRASHEX
10.12.4 AR Software
10.12.5 Engineering Dynamics Corporation (EDC)
10.12.6 Macinnis Engineering Associates (MEA) and MEA Forensic
Engineerrs & Scientists
10.12.7 Maine Computer Group
10.12.8 McHenry Software, Inc.
10.12.9 Software Acronym: VDANL
10.12.10 Expert AutoStats??Vehicle Dimension-Weight-Performance Data
10.12.11 Other AR Software Sites
10.13 Low-Speed Sideswipe Collisions
10.13.1 Funk-Cormier-Bain Model
10.13.2 Modeling Procedure
10.14 Summary of Formulae Used in Accident Reconstruction
10.15 Summary
10.16 References
10.17 Problems
Appendix A Vector Algebra
A.1 Real and Complex Vectors
A.2 Laws of Vector Operation
A.3 Linear Dependence
A.4 Three-Dimensional Vectors
A.5 Properties of Scalar Product of Vectors
A.6 Direction Angles
A.7 Vector Product
A.8 Derivative of a Vector
A.9 References
A.10 Problems
Appendix B Matrix Analysis
B.1 Introduction
B.2 Definitions of Matrices
B.3 Matrix Operations
B.4 Matrix Inversion
B.5 Determinants
B.6 More on Matrix Inversion
B.7 System of Algebraic Equations
B.8 Eigenvalues and Eigenvectors
B.9 Quadratic Forms
B.10 Positive Definite Matrix
B.11 Negative Definite Matrix
B.12 Indefinite Matrix
B.13 Norm of a Vector
B.14 Partitioning of Matrices
B.15 Augmented Matrix
B.16 Matrix Calculus
B.17 Summary
B.18 References
B.19 Problems
B.20 Glossary of Terms
Appendix C Laplace Transforms
C.1 Laplace Transformation
C.2 Existence of Laplace Transform
C.3 Inverse Laplace Transform
C.4 Properties of the Laplace Transform
C.4.1 Multiplication by a Constant
C.4.2 Sum and Difference
C.5 Special Functions
C.5.1 Exponential Function
C.5.2 Step Function
C.5.3 Ramp Function
C.5.4 Pulse Function
C.5.5 Impulse Function
C.5.6 Dirac Delta Function
C.5.7 Sinusoidal Function
C.6 Multiplication of
C.7 Differentiation
C.8 Integration
C.9 Final Value Theorem
C.10 Initial Value Theorem
C.11 Shift in Time
C.12 Complex Shifting
C.13 Real Convolution (Complex Multiplication)
C.14 Inverse Laplace Transformation
C.14.1 Partial Fraction Expansions
C.14.2 Case I?Partial Fraction Expansion When Has
Distinct Roots
C.14.3 Case II?Partial Fraction Expansion When Has
Complex Conjugate Roots
C.14.4 Case III?Partial Fraction Expansion When Has
Repeated Roots
C.15 Solution of Differential Equations
C.16 Summary
C.17 References
C.18 Problems
Appendix D Glossary of Terms
Appendix E Direct Numerical Integration Methods
E.1 Introduction
E.2 Single-Degree-of-Freedom System
E.2.1 Finite Difference Method
E.2.2 Central Difference Method
E.2.3 Runge-Kutta Method
E.3 Multiple-Degrees-of-Freedom System
E.4 Explicit Schemes
E.4.1 Central Difference Method
E.4.2 Fourth-Order Runge-Kutta Method
E.5 Implicit Schemes
E.5.1 Houbolt Method
E.5.2 Wilson-? Method
E.5.3 Newmark-? Method
E.6 Case Studies
E.6.1 Linear Dynamic System
E.6.2 Nonlinear Dynamic System
E.7 Summary
E.8 References
Appendix F Units and Conversion
F.1 The S.I. System of Units
F.2 S.I. Units Prefixes
F.3 S.I. Conversion
F.4 References
F.5 Problems
Appendix G Accident Reconstruction Formulae
G.1 Center of Mass
G.2 Slide-to-a-Stop Speed
G.3 Yaw, Sideslip, and Critical Curve Speed
G.4 Combined Speeds
G.5 360-Degree Momentum Speed Analysis
G.6 Tip and Rollover Speed
G.7 Weight Shift and Speed
G.8 Kinetic Energy and Speed
G.9 Fall, Slip, and Vault Speeds
Bibliography
List of Symbols
Index
About the Authors

Este libro ofrece un panorama detallado e integral de la dinámica de los sistemas de vehículos de carretera. Los lectores llegarán a entender cómo las leyes físicas, las consideraciones de factores humanos, y las opciones de diseño se unen para afectar paseo un vehículo s, manejo, frenado y aceleración. Tras una introducción y revisión general de la dinámica, los temas incluyen: análisis de sistemas dinámicos; la dinámica de los neumáticos; montar dinámica; análisis de vuelco del vehículo; dinámica de manejo; de frenado; aceleración; y la dinámica total de vehículos

There are no comments for this item.

Log in to your account to post a comment.