Biblioteca
Normal view MARC view ISBD view

Reinforced concrete : mechanics and design / James K. Wight, F.E. Richart, Jr., James G. Macgregor.

By: Wight, James K.
Contributor(s): Richart, F. E. (Frank Edwin), 1918- | MacGregor, James G. (James Grierson), 1934 | MacGregor, James G. (James Grierson), 1934. Reinforced concrete.
Material type: materialTypeLabelBookPublisher: Upper Saddle River, N.J. : Pearson; Prentice Hall, 2012Edition: 6th ed.Description: xviii, 1157 p. : il. ; 26 cm.ISBN: 9780132176521; 0132176521.Subject(s): CONCRETO | CONCRETO REFORZADODDC classification: 624.18341
Contents:
PREFACE xi ABOUT THE AUTHORS xv CHAPTER 1 INTRODUCTION 1-1 Reinforced Concrete Structures 1-2 Mechanics of Reinforced Concrete 1-3 Reinforced Concrete Members 1-4 Factors Affecting Choice of Reinforced Concrete for a Structure 1-5 Historical Development of Concrete and Reinforced Concrete as Structural Materials 1-6 Building Codes and the ACI Code CHAPTER 2 THE DESIGN PROCESS 2-1 Objectives of Design 2-2 The Design Process 2-3 Limit States and the Design of Reinforced Concrete 2-4 Structural Safety 2-5 Probabilistic Calculation of Safety Factors 2-6 Design Procedures Specified in the ACI Building Code 2-7 Load Factors and Load Combinations in the 2011 ACI Code 2-8 Loadings and Actions 2-9 Design for Economy 2-10 Sustainability 2-11 Customary Dimensions and Construction Tolerances 2-12 Inspection 2-13 Accuracy of Calculations 2-14 Handbooks and Design Aids CHAPTER 3 MATERIALS 3-1 Concrete 3-2 Behavior of Concrete Failing in Compression 3-3 Compressive Strength of Concrete 3-4 Strength Under Tensile and Multiaxial Loads 3-5 Stress–Strain Curves for Concrete 3-6 Time-Dependent Volume Changes 3-7 High-Strength Concrete 3-8 Lightweight Concrete 3-9 Fiber Reinforced Concrete 3-10 Durability of Concrete 3-11 Behavior of Concrete Exposed to High and Low Temperatures 3-12 Shotcrete 3-13 High-Alumina Cement 3-14 Reinforcement 3-15 Fiber-Reinforced Polymer (FRP) Reinforcement 3-16 Prestressing Steel CHAPTER 4 FLEXURE: BEHAVIOR AND NOMINAL STRENGTH OF BEAM SECTIONS 4-1 Introduction 4-2 Flexure Theory 4-3 Simplifications in Flexure Theory for Design 4-4 Analysis of Nominal Moment Strength for Singly Reinforced Beam Sections 4-5 Definition of Balanced Conditions 4-6 Code Definitions of Tension-Controlled and Compression-Controlled Sections 4-7 Beams with Compression Reinforcement 4-8 Analysis of Flanged Sections 4-9 Unsymmetrical Beam Sections CHAPTER 5 FLEXURAL DESIGN OF BEAM SECTIONS 5-1 Introduction 5-2 Analysis of Continuous One-Way Floor Systems 5-3 Design of Singly-Reinforced Beam Sections with Rectangular Compression Zones 5-4 Design of Doubly-Reinforced Beam Sections 5-5 Design of Continuous One-Way Slabs CHAPTER 6 SHEAR IN BEAMS 6-1 Introduction 6-2 Basic Theory 6-3 Behavior of Beams Failing in Shear 6-4 Truss Model of the Behavior of Slender Beams Failing in Shear 6-5 Analysis and Design of Reinforced Concrete Beams for Shear–ACI Code 6-6 Other Shear Design Methods 6-7 Hanger Reinforcement 6-8 Tapered Beams 6-9 Shear in Axially Loaded Members 6-10 Shear in Seismic Regions CHAPTER 7 TORSION 7-1 Introduction and Basic Theory 7-2 Behavior of Reinforced Concrete Members Subjected to Torsion 7-3 Design Methods for Torsion 7-4 Thin-Walled Tube/Plastic Space Truss Design Method 7-5 Design for Torsion and Shear–ACI Code 7-6 Application of ACI Code Design Method for Torsion CHAPTER 8 DEVELOPMENT, ANCHORAGE, AND SPLICING OF REINFORCEMENT 8-1 Introduction 8-2 Mechanism of Bond Transfer 8-3 Development Length 8-4 Hooked Anchorages 8-5 Headed and Mechanically Anchored Bars in Tension 8-6 Design for Anchorage 8-7 Bar Cutoffs and Development of Bars in Flexural Members 8-8 Reinforcement Continuity and Structural Integrity Requirements 8-9 Splices CHAPTER 9 SERVICEABILITY 9-1 Introduction 9-2 Elastic Analysis of Stresses in Beam Sections 9-3 Cracking 9-4 Deflections of Concrete Beams 9-5 Consideration of Deflections in Design 9-6 Frame Deflections 9-7 Vibrations 9-8 Fatigue CHAPTER 10 CONTINUOUS BEAMS AND ONE-WAY SLABS 10-1 Introduction 10-2 Continuity in Reinforced Concrete Structures 10-3 Continuous Beams 10-4 Design of Girders 10-5 Joist Floors 10-6 Moment Redistribution CHAPTER 11 COLUMNS: COMBINED AXIAL LOAD AND BENDING 11-1 Introduction 11-2 Tied and Spiral Columns 11-3 Interaction Diagrams 11-4 Interaction Diagrams for Reinforced Concrete Columns 11-5 Design of Short Columns 11-6 Contributions of Steel and Concrete to Column Strength 11-7 Biaxially Loaded Columns CHAPTER 12 SLENDER COLUMNS 12-1 Introduction 12-2 Behavior and Analysis of Pin-Ended Columns 12-3 Behavior of Restrained Columns in Nonsway Frames 12-4 Design of Columns in Nonsway Frames 12-5 Behavior of Restrained Columns in Sway Frames 12-6 Calculation of Moments in Sway Frames Using Second-Order Analyses 12-7 Design of Columns in Sway Frames 12-8 General Analysis of Slenderness Effects 12-9 Torsional Critical Load CHAPTER 13 TWO-WAY SLABS: BEHAVIOR, ANALYSIS, AND DESIGN 13-1 Introduction 13-2 History of Two-Way Slabs 13-3 Behavior of Slabs Loaded to Failure in Flexure 13-4 Analysis of Moments in Two-Way Slabs 13-5 Distribution of Moments in Slabs 13-6 Design of Slabs 13-7 The Direct-Design Method 13-8 Equivalent-Frame Methods 13-9 Use of Computers for an Equivalent-Frame Analysis 13-10 Shear Strength of Two-Way Slabs 13-11 Combined Shear and Moment Transfer in Two-Way Slabs 13-12 Details and Reinforcement Requirements 13-13 Design of Slabs Without Beams 13-14 Design of Slabs with Beams in Two Directions 13-15 Construction Loads on Slabs 13-16 Deflections in Two-Way Slab Systems 13-17 Use of Post-Tensioning CHAPTER 14 TWO-WAY SLABS: ELASTIC AND YIELD-LINE ANALYSES 14-1 Review of Elastic Analysis of Slabs 14-2 Design Moments from a Finite-Element Analysis 14-3 Yield-Line Analysis of Slabs: Introduction 14-4 Yield-Line Analysis: Applications for Two-Way Slab Panels 14-5 Yield-Line Patterns at Discontinuous Corners 14-6 Yield-Line Patterns at Columns or at Concentrated Loads CHAPTER 15 FOOTINGS 15-1 Introduction 15-2 Soil Pressure Under Footings 15-3 Structural Action of Strip and Spread Footings 15-4 Strip or Wall Footings 15-5 Spread Footings 15-6 Combined Footings 15-7 Mat Foundations 15-8 Pile Caps CHAPTER 16 SHEAR FRICTION, HORIZONTAL SHEAR TRANSFER, AND COMPOSITE CONCRETE BEAMS 16-1 Introduction 16-2 Shear Friction 16-3 Composite Concrete Beams CHAPTER 17 DISCONTINUITY REGIONS AND STRUT-AND-TIE MODELS 17-1 Introduction 17-2 Design Equation and Method of Solution 17-3 Struts 17-4 Ties 17-5 Nodes and Nodal Zones 17-6 Common Strut-and-Tie Models 17-7 Layout of Strut-and-Tie Models 17-8 Deep Beams 17-9 Continuous Deep Beams 17-10 Brackets and Corbels 17-11 Dapped Ends 17-12 Beam–Column Joints 17-13 Bearing Strength 17-14 T-Beam Flanges CHAPTER 18 WALLS AND SHEAR WALLS 18-1 Introduction 18-2 Bearing Walls 18-3 Retaining Walls 18-4 Tilt-Up Walls 18-5 Shear Walls 18-6 Lateral Load-Resisting Systems for Buildings 18-7 Shear Wall—Frame Interaction 18-8 Coupled Shear Walls 18-9 Design of Structural Walls–General 18-10 Flexural Strength of Shear Walls 18-11 Shear Strength of Shear Walls 18-12 Critical Loads for Axially Loaded Walls CHAPTER 19 DESIGN FOR EARTHQUAKE RESISTANCE 19-1 Introduction 19-2 Seismic Response Spectra 19-3 Seismic Design Requirements 19-4 Seismic Forces on Structures 19-5 Ductility of Reinforced Concrete Members 19-6 General ACI Code Provisions for Seismic Design 19-7 Flexural Members in Special Moment Frames 19-8 Columns in Special Moment Frames 19-9 Joints of Special Moment Frames 19-10 Structural Diaphragms 19-11 Structural Walls 19-12 Frame Members not Proportioned to Resist Forces Induced by Earthquake Motions 19-13 Special Precast Structures 19-14 Foundations APPENDIX A APPENDIX B INDEX
Summary: Es un texto perfecto para los profesionales en el campo que necesitan una referencia completa sobre estructuras de hormigón y el diseño de hormigón armado. Diseño de hormigón armado abarca tanto el arte y la ciencia de la ingeniería. Este libro presenta la teoría de hormigón armado como una aplicación directa de las leyes de la estática y mecánica de materiales. Además, hace hincapié en que un diseño exitoso no sólo satisface las normas de diseño, sino que también es capaz de ser construido en una manera oportuna y por un costo razonable. Un enfoque de múltiples niveles hace que el hormigón armado: Mecánica y Diseño de libros de texto de un excepcional para una gran variedad de cursos universitarios sobre el diseño de hormigón armado. Los temas se suelen incorporar en un nivel fundamental, y luego pasar a niveles más altos, y se exigirán experiencia educativa previa y el desarrollo de los criterios de ingeniería.
List(s) this item appears in: CONCRETO
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Vol info Copy number Status Date due Barcode Item holds
LIBRO - MATERIAL GENERAL LIBRO - MATERIAL GENERAL Biblioteca Jorge Álvarez Lleras
Fondo general
Colección / Fondo / Acervo / Resguardo 624.18341 W657r (Browse shelf) Ej. 1 1 Available 023714
Total holds: 0

ed. revisada de: Reinforced concrete / James G. MacGregor, James K. Wight. 5th ed. 2009.

Incluye indices

PREFACE xi

ABOUT THE AUTHORS xv

CHAPTER 1 INTRODUCTION

1-1 Reinforced Concrete Structures

1-2 Mechanics of Reinforced Concrete

1-3 Reinforced Concrete Members

1-4 Factors Affecting Choice of Reinforced Concrete for a Structure

1-5 Historical Development of Concrete and Reinforced Concrete as Structural Materials

1-6 Building Codes and the ACI Code

CHAPTER 2 THE DESIGN PROCESS

2-1 Objectives of Design

2-2 The Design Process

2-3 Limit States and the Design of Reinforced Concrete

2-4 Structural Safety

2-5 Probabilistic Calculation of Safety Factors

2-6 Design Procedures Specified in the ACI Building Code

2-7 Load Factors and Load Combinations in the 2011 ACI Code

2-8 Loadings and Actions

2-9 Design for Economy

2-10 Sustainability

2-11 Customary Dimensions and Construction Tolerances

2-12 Inspection

2-13 Accuracy of Calculations

2-14 Handbooks and Design Aids

CHAPTER 3 MATERIALS

3-1 Concrete

3-2 Behavior of Concrete Failing in Compression

3-3 Compressive Strength of Concrete

3-4 Strength Under Tensile and Multiaxial Loads

3-5 Stress–Strain Curves for Concrete

3-6 Time-Dependent Volume Changes

3-7 High-Strength Concrete

3-8 Lightweight Concrete

3-9 Fiber Reinforced Concrete

3-10 Durability of Concrete

3-11 Behavior of Concrete Exposed to High and Low Temperatures

3-12 Shotcrete

3-13 High-Alumina Cement

3-14 Reinforcement

3-15 Fiber-Reinforced Polymer (FRP) Reinforcement

3-16 Prestressing Steel

CHAPTER 4 FLEXURE: BEHAVIOR AND NOMINAL STRENGTH OF BEAM SECTIONS

4-1 Introduction

4-2 Flexure Theory

4-3 Simplifications in Flexure Theory for Design

4-4 Analysis of Nominal Moment Strength for Singly Reinforced Beam Sections

4-5 Definition of Balanced Conditions

4-6 Code Definitions of Tension-Controlled and Compression-Controlled Sections

4-7 Beams with Compression Reinforcement

4-8 Analysis of Flanged Sections

4-9 Unsymmetrical Beam Sections

CHAPTER 5 FLEXURAL DESIGN OF BEAM SECTIONS

5-1 Introduction

5-2 Analysis of Continuous One-Way Floor Systems

5-3 Design of Singly-Reinforced Beam Sections with Rectangular Compression Zones

5-4 Design of Doubly-Reinforced Beam Sections

5-5 Design of Continuous One-Way Slabs

CHAPTER 6 SHEAR IN BEAMS

6-1 Introduction

6-2 Basic Theory

6-3 Behavior of Beams Failing in Shear

6-4 Truss Model of the Behavior of Slender Beams Failing in Shear

6-5 Analysis and Design of Reinforced Concrete Beams for Shear–ACI Code

6-6 Other Shear Design Methods

6-7 Hanger Reinforcement

6-8 Tapered Beams

6-9 Shear in Axially Loaded Members

6-10 Shear in Seismic Regions

CHAPTER 7 TORSION

7-1 Introduction and Basic Theory

7-2 Behavior of Reinforced Concrete Members Subjected to Torsion

7-3 Design Methods for Torsion

7-4 Thin-Walled Tube/Plastic Space Truss Design Method

7-5 Design for Torsion and Shear–ACI Code

7-6 Application of ACI Code Design Method for Torsion

CHAPTER 8 DEVELOPMENT, ANCHORAGE, AND SPLICING OF REINFORCEMENT

8-1 Introduction

8-2 Mechanism of Bond Transfer

8-3 Development Length

8-4 Hooked Anchorages

8-5 Headed and Mechanically Anchored Bars in Tension

8-6 Design for Anchorage

8-7 Bar Cutoffs and Development of Bars in Flexural Members

8-8 Reinforcement Continuity and Structural Integrity Requirements

8-9 Splices

CHAPTER 9 SERVICEABILITY

9-1 Introduction

9-2 Elastic Analysis of Stresses in Beam Sections

9-3 Cracking

9-4 Deflections of Concrete Beams

9-5 Consideration of Deflections in Design

9-6 Frame Deflections

9-7 Vibrations

9-8 Fatigue

CHAPTER 10 CONTINUOUS BEAMS AND ONE-WAY SLABS

10-1 Introduction

10-2 Continuity in Reinforced Concrete Structures

10-3 Continuous Beams

10-4 Design of Girders

10-5 Joist Floors

10-6 Moment Redistribution

CHAPTER 11 COLUMNS: COMBINED AXIAL LOAD AND BENDING

11-1 Introduction

11-2 Tied and Spiral Columns

11-3 Interaction Diagrams

11-4 Interaction Diagrams for Reinforced Concrete Columns

11-5 Design of Short Columns

11-6 Contributions of Steel and Concrete to Column Strength

11-7 Biaxially Loaded Columns

CHAPTER 12 SLENDER COLUMNS

12-1 Introduction

12-2 Behavior and Analysis of Pin-Ended Columns

12-3 Behavior of Restrained Columns in Nonsway Frames

12-4 Design of Columns in Nonsway Frames

12-5 Behavior of Restrained Columns in Sway Frames

12-6 Calculation of Moments in Sway Frames Using Second-Order Analyses

12-7 Design of Columns in Sway Frames

12-8 General Analysis of Slenderness Effects

12-9 Torsional Critical Load

CHAPTER 13 TWO-WAY SLABS: BEHAVIOR, ANALYSIS, AND DESIGN

13-1 Introduction

13-2 History of Two-Way Slabs

13-3 Behavior of Slabs Loaded to Failure in Flexure

13-4 Analysis of Moments in Two-Way Slabs

13-5 Distribution of Moments in Slabs

13-6 Design of Slabs

13-7 The Direct-Design Method

13-8 Equivalent-Frame Methods

13-9 Use of Computers for an Equivalent-Frame Analysis

13-10 Shear Strength of Two-Way Slabs

13-11 Combined Shear and Moment Transfer in Two-Way Slabs

13-12 Details and Reinforcement Requirements

13-13 Design of Slabs Without Beams

13-14 Design of Slabs with Beams in Two Directions

13-15 Construction Loads on Slabs

13-16 Deflections in Two-Way Slab Systems

13-17 Use of Post-Tensioning

CHAPTER 14 TWO-WAY SLABS: ELASTIC AND YIELD-LINE ANALYSES

14-1 Review of Elastic Analysis of Slabs

14-2 Design Moments from a Finite-Element Analysis

14-3 Yield-Line Analysis of Slabs: Introduction

14-4 Yield-Line Analysis: Applications for Two-Way Slab Panels

14-5 Yield-Line Patterns at Discontinuous Corners

14-6 Yield-Line Patterns at Columns or at Concentrated Loads

CHAPTER 15 FOOTINGS

15-1 Introduction

15-2 Soil Pressure Under Footings

15-3 Structural Action of Strip and Spread Footings

15-4 Strip or Wall Footings

15-5 Spread Footings

15-6 Combined Footings

15-7 Mat Foundations

15-8 Pile Caps

CHAPTER 16 SHEAR FRICTION, HORIZONTAL SHEAR TRANSFER, AND COMPOSITE CONCRETE BEAMS

16-1 Introduction

16-2 Shear Friction

16-3 Composite Concrete Beams

CHAPTER 17 DISCONTINUITY REGIONS AND STRUT-AND-TIE MODELS

17-1 Introduction

17-2 Design Equation and Method of Solution

17-3 Struts

17-4 Ties

17-5 Nodes and Nodal Zones

17-6 Common Strut-and-Tie Models

17-7 Layout of Strut-and-Tie Models

17-8 Deep Beams

17-9 Continuous Deep Beams

17-10 Brackets and Corbels

17-11 Dapped Ends

17-12 Beam–Column Joints

17-13 Bearing Strength

17-14 T-Beam Flanges

CHAPTER 18 WALLS AND SHEAR WALLS

18-1 Introduction

18-2 Bearing Walls

18-3 Retaining Walls

18-4 Tilt-Up Walls

18-5 Shear Walls

18-6 Lateral Load-Resisting Systems for Buildings

18-7 Shear Wall—Frame Interaction

18-8 Coupled Shear Walls

18-9 Design of Structural Walls–General

18-10 Flexural Strength of Shear Walls

18-11 Shear Strength of Shear Walls

18-12 Critical Loads for Axially Loaded Walls

CHAPTER 19 DESIGN FOR EARTHQUAKE RESISTANCE

19-1 Introduction

19-2 Seismic Response Spectra

19-3 Seismic Design Requirements

19-4 Seismic Forces on Structures

19-5 Ductility of Reinforced Concrete Members

19-6 General ACI Code Provisions for Seismic Design

19-7 Flexural Members in Special Moment Frames

19-8 Columns in Special Moment Frames

19-9 Joints of Special Moment Frames

19-10 Structural Diaphragms

19-11 Structural Walls

19-12 Frame Members not Proportioned to Resist Forces Induced by Earthquake Motions

19-13 Special Precast Structures

19-14 Foundations

APPENDIX A

APPENDIX B

INDEX

Es un texto perfecto para los profesionales en el campo que necesitan una referencia completa sobre estructuras de hormigón y el diseño de hormigón armado. Diseño de hormigón armado abarca tanto el arte y la ciencia de la ingeniería. Este libro presenta la teoría de hormigón armado como una aplicación directa de las leyes de la estática y mecánica de materiales. Además, hace hincapié en que un diseño exitoso no sólo satisface las normas de diseño, sino que también es capaz de ser construido en una manera oportuna y por un costo razonable. Un enfoque de múltiples niveles hace que el hormigón armado: Mecánica y Diseño de libros de texto de un excepcional para una gran variedad de cursos universitarios sobre el diseño de hormigón armado. Los temas se suelen incorporar en un nivel fundamental, y luego pasar a niveles más altos, y se exigirán experiencia educativa previa y el desarrollo de los criterios de ingeniería.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer