Life Cycle Assessment (LCA) : A Guide to Best Practice / Walter Klöpffer ; Birgit Grahl

By: Klöpffer, WalterContributor(s): Grahl, BirgitMaterial type: TextTextPublisher: Weinheim, Bergstr : John Wiley and Sons, 2014Description: XIII, 396 p. : il., Tab. ; 24 cmISBN: 9783527329861; 3527329862Subject(s): CONTABILIDAD AMBIENTAL | CICLO DE VIDA DE PRODUCTODDC classification: 658.408
Contents:
Preface XI 1 Introduction 1 (26) 1.1 What Is Life Cycle Assessment (LCA)? 1 (5) 1.1.1 Definition and Limitations 1 (1) 1.1.2 Life Cycle of a Product 2 (1) 1.1.3 Functional Unit 3 (1) 1.1.4 LCA as System Analysis 4 (1) 1.1.5 LCA and Operational Input-Output Analysis (Gate-to-Gate) 5 (1) 1.2 History 6 (4) 1.2.1 Early LCAs 6 (1) 1.2.2 Environmental Policy Background 7 (1) 1.2.3 Energy Analysis 8 (1) 1.2.4 The 1980s 8 (1) 1.2.5 The Role of SETAC 9 (1) 1.3 The Structure of LCA 10 (4) 1.3.1 Structure According to SETAC 10 (1) 1.3.2 Structure of LCA According to ISO 11 (1) 1.3.3 Valuation - a Separate Phase? 12 (2) 1.4 Standardisation of LCA 14 (3) 1.4.1 Process of Formation 14 (2) 1.4.2 Status Quo 16 (1) 1.5 Literature and Information on LCA 17 (1) References 18 (9) 2 Goal and Scope Definition 27 (36) 2.1 Goal Definition 27 (1) 2.2 Scope 28 (19) 2.2.1 Product System 28 (1) 2.2.2 Technical System Boundary 29 (5) 2.2.2.1 Cut-Off Criteria 29 (3) 2.2.2.2 Demarcation towards System Surrounding 32 (2) 2.2.3 Geographical System Boundary 34 (1) 2.2.4 Temporal System Boundary/Time Horizon 35 (2) 2.2.5 The Functional Unit 37 (6) 2.2.5.1 Definition of a Suitable Functional Unit and a Reference Flow 37 (3) 2.2.5.2 Impairment Factors on Comparison - Negligible Added Value 40 (1) 2.2.5.3 Procedure for Non-negligible Added Value 41 (2) 2.2.6 Data Availability and Depth of Study 43 (1) 2.2.7 Further Definitions 44 (3) 2.2.7.1 Type of Impact Assessment 44 (1) 2.2.7.2 Valuation (Weighting), Assumptions and Notions of Value 45 (1) 2.2.7.3 Critical Review 46 (1) 2.2.8 Further Definitions to the Scope 47 (1) 2.3 Illustration of the Component 'Definition of Goal and Scope' Using an Example of Practice 47 (10) 2.3.1 Goal Definition 48 (2) 2.3.2 Scope 50 (13) 2.3.2.1 Product Systems 50 (3) 2.3.2.2 Technical System Boundaries and Cut-Off Criteria 53 (1) 2.3.2.3 Demarcation to the System Surrounding 53 (1) 2.3.2.4 Geographical System Boundary 54 (1) 2.3.2.5 Temporal System Boundary 55 (1) 2.3.2.6 Functional Unit and Reference Flow 55 (1) 2.3.2.7 Data Availability and Depth of Study 55 (1) 2.3.2.8 Type of Life Cycle Impact Assessment 56 (1) 2.3.2.9 Methods of Interpretation 57 (1) 2.3.2.10 Critical Review 57 (1) References 57 (6) 3 Life Cycle Inventory Analysis 63 (118) 3.1 Basics 63 (11) 3.1.1 Scientific Principles 63 (1) 3.1.2 Literature on Fundamentals of the Inventory Analysis 64 (1) 3.1.3 The Unit Process as the Smallest Cell of LCI 65 (4) 3.1.3.1 Integration into the System Flow Chart 65 (2) 3.1.3.2 Balancing 67 (2) 3.1.4 Flow Charts 69 (3) 3.1.5 Reference Values 72 (2) 3.2 Energy Analysis 74 (18) 3.2.1 Introduction 74 (3) 3.2.2 Cumulative Energy Demand (CED) 77 (4) 3.2.2.1 Definition 77 (1) 3.2.2.2 Partial Amounts 77 (2) 3.2.2.3 Balancing Boundaries 79 (2) 3.2.3 Energy Content of Inflammable Materials 81 (4) 3.2.3.1 Fossil Fuels 81 (1) 3.2.3.2 Quantification 81 (3) 3.2.3.3 Infrastructure 84 (1) 3.2.4 Supply of Electricity 85 (3) 3.2.5 Transports 88 (4) 3.3 Allocation 92 (26) 3.3.1 Fundamentals of Allocation 92 (1) 3.3.2 Allocation by the Example of Co-production 92 (13) 3.3.2.1 Definition of Co-production 92 (1) 3.3.2.2 'Fair' Allocation? 93 (5) 3.3.2.3 Proposed Solutions 98 (3) 3.3.2.4 Further Approaches to the Allocation of Co-products 101 (1) 3.3.2.5 System Expansion 102 (3) 3.3.3 Allocation and Recycling in Closed-Loops and Re-use 105 (2) 3.3.4 Allocation and Recycling for Open-Loop Recycling (COLR) 107 (6) 3.3.4.1 Definition of the Problem 107 (2) 3.3.4.2 Allocation per Equal Parts 109 (2) 3.3.4.3 Cut-off Rule 111 (2) 3.3.4.4 Overall Load to System B 113 (1) 3.3.5 Allocation within Waste-LCAs 113 (4) 3.3.5.1 Modelling of Waste Disposal of a Product 114 (2) 3.3.5.2 Comparison of Different Options of Waste Disposal 116 (1) 3.3.6 Summary on Allocation 117 (1) 3.4 Procurement, Origin and Quality of Data 118 (16) 3.4.1 Refining the System Flow Chart and Preparing Data Procurement 118 (1) 3.4.2 Procurement of Specific Data 119 (8) 3.4.3 Generic Data and Partial LCIs 127 (5) 3.4.3.1 Which Data are 'Generic'? 127 (2) 3.4.3.2 Reports, Publications, Web Sites 129 (2) 3.4.3.3 Purchasable Data Bases and Software Systems 131 (1) 3.4.4 Estimations 132 (1) 3.4.5 Data Quality and Documentation 133 (1) 3.5 Data Aggregation and Units 134 (2) 3.6 Presentation of Inventory Results 136 (1) 3.7 Illustration of the Inventory Phase by an Example 137 (33) 3.7.1 Differentiated Description of the Examined Product Systems 138 (5) 3.7.1.1 Materials in the Product System 138 (2) 3.7.1.2 Mass Flows of the Product after Use Phase 140 (2) 3.7.1.3 Handling of Sorting Residues and Mixed Plastics Fraction 142 (1) 3.7.1.4 Recovery of Transport Packaging 143 (1) 3.7.2 Analysis of Production, Recovery Technologies and Other Relevant Processes of the Production System 143 (10) 3.7.2.1 Production Procedures of the Materials 143 (3) 3.7.2.2 Production by Materials 146 (2) 3.7.2.3 Distribution 148 (1) 3.7.2.4 Collection and Sorting of Used Packaging 148 (1) 3.7.2.5 Recovery Technologies (Recycling) 149 (2) 3.7.2.6 Recycling of Transport Packagings 151 (1) 3.7.2.7 Transportation by Truck 152 (1) 3.7.2.8 Electricity Supply 152 (1) 3.7.3 Elaboration of a Differentiated System Flow Chart with Reference Flows 153 (1) 3.7.4 Allocation 153 (4) 3.7.4.1 Definition of Allocation Rules on Process Level 153 (4) 3.7.4.2 Definition of Allocation Rules on System Level for Open-Loop Recycling 157 (1) 3.7.5 Modelling of the System 157 (1) 3.7.6 Calculation of the Life Cycle Inventory 158 (25) 3.7.6.1 Input 159 (6) 3.7.6.2 Output 165 (5) References 170 (11) 4 Life Cycle Impact Assessment 181 (148) 4.1 Basic Principle of Life Cycle Impact Assessment 181 (2) 4.2 Method of Critical Volumes 183 (4) 4.2.1 Interpretation 184 (1) 4.2.2 Criticism 185 (2) 4.3 Structure of Impact Assessment according to ISO 14040 and 14044 187 (14) 4.3.1 Mandatory and Optional Elements 187 (1) 4.3.2 Mandatory Elements 187 (5) 4.3.2.1 Selection of Impact Categories - Indicators and Characterisation Factors 187 (3) 4.3.2.2 Classification 190 (1) 4.3.2.3 Characterisation 191 (1) 4.3.3 Optional Elements of LCIA 192 (9) 4.3.3.1 Normalisation 192 (5) 4.3.3.2 Grouping 197 (3) 4.3.3.3 Weighting 200 (1) 4.3.3.4 Additional Analysis of Data Quality 201 (1) 4.4 Method of Impact Categories (Environmental Problem Fields) 201 (11) 4.4.1 Introduction 201 (1) 4.4.2 First ('Historical') Lists of the Environmental Problem Fields 202 (4) 4.4.3 Stressor-Effect Relationships and Indicators 206 (6) 4.4.3.1 Hierarchy of Impacts 207 (2) 4.4.3.2 Potential versus Actual Impacts 209 (3) 4.5 Impact Categories, Impact Indicators and Characterisation Factors 212 (79) 4.5.1 Input-Related Impact Categories 212 (21) 4.5.1.1 Overview 212 (2) 4.5.1.2 Consumption of Abiotic Resources 214 (6) 4.5.1.3 Cumulative Energy and Exergy Demand 220 (2) 4.5.1.4 Consumption of Biotic Resources 222 (2) 4.5.1.5 Use of (Fresh) Water 224 (3) 4.5.1.6 Land Use 227 (6) 4.5.2 Output-Based Impact Categories (Global and Regional Impacts) 233 (35) 4.5.2.1 Overview 233 (1) 4.5.2.2 Climate Change 234 (6) 4.5.2.3 Stratospheric Ozone Depletion 240 (6) 4.5.2.4 Formation of Photo Oxidants (Summer Smog) 246 (8) 4.5.2.5 Acidification 254 (7) 4.5.2.6 Eutrophication 261 (7) 4.5.3 Toxicity-Related Impact Categories 268 (18) 4.5.3.1 Introduction 268 (1) 4.5.3.2 Human Toxicity 269 (10) 4.5.3.3 Ecotoxicity 279 (6) 4.5.3.4 Concluding Remark on the Toxicity Categories 285 (1) 4.5.4 Nuisances by Chemical and Physical Emissions 286 (3) 4.5.4.1 Introduction 286 (1) 4.5.4.2 Smell 286 (1) 4.5.4.3 Noise 287 (2) 4.5.5 Accidents and Radioactivity 289 (2) 4.5.5.1 Casualties 289 (1) 4.5.5.2 Radioactivity 290 (1) 4.6 Illustration of the Phase Impact Assessment by Practical Example 291 (20) 4.6.1 Selection of Impact Categories - Indicators and Characterisation Factors 293 (7) 4.6.1.1 (Greenhouse) Global Warming Potential 294 (1) 4.6.1.2 Photo-Oxidant Formation (Photo Smog or Summer Smog Potential) 295 (1) 4.6.1.3 Eutrophication Potential 296 (1) 4.6.1.4 Acidification Potential 297 (1) 4.6.1.5 Resource Demand 298 (2) 4.6.2 Classification 300 (1) 4.6.3 Characterisation 300 (5) 4.6.4 Normalisation 305 (5) 4.6.5 Grouping 310 (1) 4.6.6 Weighting 311 (1) References 311 (18) 5 Life Cycle Interpretation, Reporting and Critical Review 329 (28) 5.1 Development and Rank of the Interpretation Phase 329 (2) 5.2 The Phase Interpretation According to ISO 331 (3) 5.2.1 Interpretation in ISO 14040 331 (1) 5.2.2 Interpretation in ISO 14044 331 (1) 5.2.3 Identification of Significant Issues 332 (1) 5.2.4 Evaluation 333 (1) 5.3 Techniques for Result Analysis 334 (4) 5.3.1 Scientific Background 334 (1) 5.3.2 Mathematical Methods 335 (3) 5.3.3 Non-numerical Methods 338 (1) 5.4 Reporting 338 (2) 5.5 Critical Review 340 (3) 5.5.1 Outlook 342 (1) 5.6 Illustration of the Component Interpretation Using an Example of Practice 343 (9) 5.6.1 Comparison Based on Impact Indicator Results 343 (1) 5.6.2 Comparison Based on Normalisation Results 344 (1) 5.6.3 Sectoral Analysis 344 (2) 5.6.4 Completeness, Consistency and Data Quality 346 (1) 5.6.5 Significance of Differences 347 (1) 5.6.6 Sensitivity Analyses 348 (2) 5.6.7 Restrictions 350 (1) 5.6.8 Conclusions and Recommendations 351 (1) 5.6.9 Critical Review 351 (1) References 352 (5) 6 From LCA to Sustainability Assessment 357 (18) 6.1 Sustainability 357 (1) 6.2 The Three Dimensions of Sustainability 358 (3) 6.3 State of the Art of Methods 361 (7) 6.3.1 Life Cycle Assessment - LCA 361 (3) 6.3.2 Life Cycle Costing - LCC 364 (2) 6.3.3 Product-Related Social Life Cycle Assessment - SLCA 366 (2) 6.4 One Life Cycle Assessment or Three? 368 (2) 6.4.1 Option 1 368 (1) 6.4.2 Option 2 369 (1) 6.5 Conclusions 370 (1) References 371 (4) Appendix A Solution of Exercises 375 (6) Appendix B Standard Report Sheet of Electricity Mix Germany (UBA 2000, Materials p. 179ff) Historic example, only for illustrative purposes 381 (4) Acronyms/Abbreviations 385 (6) Index 391
Summary: Esta primera guía práctica para la Evaluación del Ciclo de ISO-compliant de Vida (ACV) hace que esta poderosa herramienta inmediatamente accesible a los profesionales y estudiantes. Tras una introducción general sobre la filosofía y el propósito de LCA, el lector se toma a través de todas las etapas de un análisis completo de LCA, con cada paso ejemplificado por los datos de la vida real de un importante proyecto de LCA sobre envases de bebidas. Medidas como la huella de carbono y agua, con base en las más recientes normas y definiciones internacionales, se abordan.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Vol info Copy number Status Date due Barcode Item holds
LIBRO - MATERIAL GENERAL LIBRO - MATERIAL GENERAL Biblioteca Jorge Álvarez Lleras
Fondo general
Colección / Fondo / Acervo / Resguardo 658.408 K666l (Browse shelf) Ej. 1 1 Checked out 2018-12-12 023721
Total holds: 0

Incluye indices

Preface XI
1 Introduction 1 (26)
1.1 What Is Life Cycle Assessment (LCA)?
1 (5)
1.1.1 Definition and Limitations
1 (1)
1.1.2 Life Cycle of a Product
2 (1)
1.1.3 Functional Unit
3 (1)
1.1.4 LCA as System Analysis
4 (1)
1.1.5 LCA and Operational Input-Output Analysis (Gate-to-Gate)
5 (1)
1.2 History
6 (4)
1.2.1 Early LCAs
6 (1)
1.2.2 Environmental Policy Background
7 (1)
1.2.3 Energy Analysis
8 (1)
1.2.4 The 1980s
8 (1)
1.2.5 The Role of SETAC
9 (1)
1.3 The Structure of LCA
10 (4)
1.3.1 Structure According to SETAC
10 (1)
1.3.2 Structure of LCA According to ISO
11 (1)
1.3.3 Valuation - a Separate Phase?
12 (2)
1.4 Standardisation of LCA
14 (3)
1.4.1 Process of Formation
14 (2)
1.4.2 Status Quo
16 (1)
1.5 Literature and Information on LCA
17 (1)
References
18 (9)
2 Goal and Scope Definition 27 (36)
2.1 Goal Definition
27 (1)
2.2 Scope
28 (19)
2.2.1 Product System
28 (1)
2.2.2 Technical System Boundary
29 (5)
2.2.2.1 Cut-Off Criteria
29 (3)
2.2.2.2 Demarcation towards System Surrounding
32 (2)
2.2.3 Geographical System Boundary
34 (1)
2.2.4 Temporal System Boundary/Time Horizon
35 (2)
2.2.5 The Functional Unit
37 (6)
2.2.5.1 Definition of a Suitable Functional Unit and a Reference Flow
37 (3)
2.2.5.2 Impairment Factors on Comparison - Negligible Added Value
40 (1)
2.2.5.3 Procedure for Non-negligible Added Value
41 (2)
2.2.6 Data Availability and Depth of Study
43 (1)
2.2.7 Further Definitions
44 (3)
2.2.7.1 Type of Impact Assessment
44 (1)
2.2.7.2 Valuation (Weighting), Assumptions and Notions of Value
45 (1)
2.2.7.3 Critical Review
46 (1)
2.2.8 Further Definitions to the Scope
47 (1)
2.3 Illustration of the Component 'Definition of Goal and Scope' Using an Example of Practice
47 (10)
2.3.1 Goal Definition
48 (2)
2.3.2 Scope
50 (13)
2.3.2.1 Product Systems
50 (3)
2.3.2.2 Technical System Boundaries and Cut-Off Criteria
53 (1)
2.3.2.3 Demarcation to the System Surrounding
53 (1)
2.3.2.4 Geographical System Boundary
54 (1)
2.3.2.5 Temporal System Boundary
55 (1)
2.3.2.6 Functional Unit and Reference Flow
55 (1)
2.3.2.7 Data Availability and Depth of Study
55 (1)
2.3.2.8 Type of Life Cycle Impact Assessment
56 (1)
2.3.2.9 Methods of Interpretation
57 (1)
2.3.2.10 Critical Review
57 (1)
References
57 (6)
3 Life Cycle Inventory Analysis 63 (118)
3.1 Basics
63 (11)
3.1.1 Scientific Principles
63 (1)
3.1.2 Literature on Fundamentals of the Inventory Analysis
64 (1)
3.1.3 The Unit Process as the Smallest Cell of LCI
65 (4)
3.1.3.1 Integration into the System Flow Chart
65 (2)
3.1.3.2 Balancing
67 (2)
3.1.4 Flow Charts
69 (3)
3.1.5 Reference Values
72 (2)
3.2 Energy Analysis
74 (18)
3.2.1 Introduction
74 (3)
3.2.2 Cumulative Energy Demand (CED)
77 (4)
3.2.2.1 Definition
77 (1)
3.2.2.2 Partial Amounts
77 (2)
3.2.2.3 Balancing Boundaries
79 (2)
3.2.3 Energy Content of Inflammable Materials
81 (4)
3.2.3.1 Fossil Fuels
81 (1)
3.2.3.2 Quantification
81 (3)
3.2.3.3 Infrastructure
84 (1)
3.2.4 Supply of Electricity
85 (3)
3.2.5 Transports
88 (4)
3.3 Allocation
92 (26)
3.3.1 Fundamentals of Allocation
92 (1)
3.3.2 Allocation by the Example of Co-production
92 (13)
3.3.2.1 Definition of Co-production
92 (1)
3.3.2.2 'Fair' Allocation?
93 (5)
3.3.2.3 Proposed Solutions
98 (3)
3.3.2.4 Further Approaches to the Allocation of Co-products
101 (1)
3.3.2.5 System Expansion
102 (3)
3.3.3 Allocation and Recycling in Closed-Loops and Re-use
105 (2)
3.3.4 Allocation and Recycling for Open-Loop Recycling (COLR)
107 (6)
3.3.4.1 Definition of the Problem
107 (2)
3.3.4.2 Allocation per Equal Parts
109 (2)
3.3.4.3 Cut-off Rule
111 (2)
3.3.4.4 Overall Load to System B
113 (1)
3.3.5 Allocation within Waste-LCAs
113 (4)
3.3.5.1 Modelling of Waste Disposal of a Product
114 (2)
3.3.5.2 Comparison of Different Options of Waste Disposal
116 (1)
3.3.6 Summary on Allocation
117 (1)
3.4 Procurement, Origin and Quality of Data
118 (16)
3.4.1 Refining the System Flow Chart and Preparing Data Procurement
118 (1)
3.4.2 Procurement of Specific Data
119 (8)
3.4.3 Generic Data and Partial LCIs
127 (5)
3.4.3.1 Which Data are 'Generic'?
127 (2)
3.4.3.2 Reports, Publications, Web Sites
129 (2)
3.4.3.3 Purchasable Data Bases and Software Systems
131 (1)
3.4.4 Estimations
132 (1)
3.4.5 Data Quality and Documentation
133 (1)
3.5 Data Aggregation and Units
134 (2)
3.6 Presentation of Inventory Results
136 (1)
3.7 Illustration of the Inventory Phase by an Example
137 (33)
3.7.1 Differentiated Description of the Examined Product Systems
138 (5)
3.7.1.1 Materials in the Product System
138 (2)
3.7.1.2 Mass Flows of the Product after Use Phase
140 (2)
3.7.1.3 Handling of Sorting Residues and Mixed Plastics Fraction
142 (1)
3.7.1.4 Recovery of Transport Packaging
143 (1)
3.7.2 Analysis of Production, Recovery Technologies and Other Relevant Processes of the Production System
143 (10)
3.7.2.1 Production Procedures of the Materials
143 (3)
3.7.2.2 Production by Materials
146 (2)
3.7.2.3 Distribution
148 (1)
3.7.2.4 Collection and Sorting of Used Packaging
148 (1)
3.7.2.5 Recovery Technologies (Recycling)
149 (2)
3.7.2.6 Recycling of Transport Packagings
151 (1)
3.7.2.7 Transportation by Truck
152 (1)
3.7.2.8 Electricity Supply
152 (1)
3.7.3 Elaboration of a Differentiated System Flow Chart with Reference Flows
153 (1)
3.7.4 Allocation
153 (4)
3.7.4.1 Definition of Allocation Rules on Process Level
153 (4)
3.7.4.2 Definition of Allocation Rules on System Level for Open-Loop Recycling
157 (1)
3.7.5 Modelling of the System
157 (1)
3.7.6 Calculation of the Life Cycle Inventory
158 (25)
3.7.6.1 Input
159 (6)
3.7.6.2 Output
165 (5)
References
170 (11)
4 Life Cycle Impact Assessment 181 (148)
4.1 Basic Principle of Life Cycle Impact Assessment
181 (2)
4.2 Method of Critical Volumes
183 (4)
4.2.1 Interpretation
184 (1)
4.2.2 Criticism
185 (2)
4.3 Structure of Impact Assessment according to ISO 14040 and 14044
187 (14)
4.3.1 Mandatory and Optional Elements
187 (1)
4.3.2 Mandatory Elements
187 (5)
4.3.2.1 Selection of Impact Categories - Indicators and Characterisation Factors
187 (3)
4.3.2.2 Classification
190 (1)
4.3.2.3 Characterisation
191 (1)
4.3.3 Optional Elements of LCIA
192 (9)
4.3.3.1 Normalisation
192 (5)
4.3.3.2 Grouping
197 (3)
4.3.3.3 Weighting
200 (1)
4.3.3.4 Additional Analysis of Data Quality
201 (1)
4.4 Method of Impact Categories (Environmental Problem Fields)
201 (11)
4.4.1 Introduction
201 (1)
4.4.2 First ('Historical') Lists of the Environmental Problem Fields
202 (4)
4.4.3 Stressor-Effect Relationships and Indicators
206 (6)
4.4.3.1 Hierarchy of Impacts
207 (2)
4.4.3.2 Potential versus Actual Impacts
209 (3)
4.5 Impact Categories, Impact Indicators and Characterisation Factors
212 (79)
4.5.1 Input-Related Impact Categories
212 (21)
4.5.1.1 Overview
212 (2)
4.5.1.2 Consumption of Abiotic Resources
214 (6)
4.5.1.3 Cumulative Energy and Exergy Demand
220 (2)
4.5.1.4 Consumption of Biotic Resources
222 (2)
4.5.1.5 Use of (Fresh) Water
224 (3)
4.5.1.6 Land Use
227 (6)
4.5.2 Output-Based Impact Categories (Global and Regional Impacts)
233 (35)
4.5.2.1 Overview
233 (1)
4.5.2.2 Climate Change
234 (6)
4.5.2.3 Stratospheric Ozone Depletion
240 (6)
4.5.2.4 Formation of Photo Oxidants (Summer Smog)
246 (8)
4.5.2.5 Acidification
254 (7)
4.5.2.6 Eutrophication
261 (7)
4.5.3 Toxicity-Related Impact Categories
268 (18)
4.5.3.1 Introduction
268 (1)
4.5.3.2 Human Toxicity
269 (10)
4.5.3.3 Ecotoxicity
279 (6)
4.5.3.4 Concluding Remark on the Toxicity Categories
285 (1)
4.5.4 Nuisances by Chemical and Physical Emissions
286 (3)
4.5.4.1 Introduction
286 (1)
4.5.4.2 Smell
286 (1)
4.5.4.3 Noise
287 (2)
4.5.5 Accidents and Radioactivity
289 (2)
4.5.5.1 Casualties
289 (1)
4.5.5.2 Radioactivity
290 (1)
4.6 Illustration of the Phase Impact Assessment by Practical Example
291 (20)
4.6.1 Selection of Impact Categories - Indicators and Characterisation Factors
293 (7)
4.6.1.1 (Greenhouse) Global Warming Potential
294 (1)
4.6.1.2 Photo-Oxidant Formation (Photo Smog or Summer Smog Potential)
295 (1)
4.6.1.3 Eutrophication Potential
296 (1)
4.6.1.4 Acidification Potential
297 (1)
4.6.1.5 Resource Demand
298 (2)
4.6.2 Classification
300 (1)
4.6.3 Characterisation
300 (5)
4.6.4 Normalisation
305 (5)
4.6.5 Grouping
310 (1)
4.6.6 Weighting
311 (1)
References
311 (18)
5 Life Cycle Interpretation, Reporting and Critical Review 329 (28)
5.1 Development and Rank of the Interpretation Phase
329 (2)
5.2 The Phase Interpretation According to ISO
331 (3)
5.2.1 Interpretation in ISO 14040
331 (1)
5.2.2 Interpretation in ISO 14044
331 (1)
5.2.3 Identification of Significant Issues
332 (1)
5.2.4 Evaluation
333 (1)
5.3 Techniques for Result Analysis
334 (4)
5.3.1 Scientific Background
334 (1)
5.3.2 Mathematical Methods
335 (3)
5.3.3 Non-numerical Methods
338 (1)
5.4 Reporting
338 (2)
5.5 Critical Review
340 (3)
5.5.1 Outlook
342 (1)
5.6 Illustration of the Component Interpretation Using an Example of Practice
343 (9)
5.6.1 Comparison Based on Impact Indicator Results
343 (1)
5.6.2 Comparison Based on Normalisation Results
344 (1)
5.6.3 Sectoral Analysis
344 (2)
5.6.4 Completeness, Consistency and Data Quality
346 (1)
5.6.5 Significance of Differences
347 (1)
5.6.6 Sensitivity Analyses
348 (2)
5.6.7 Restrictions
350 (1)
5.6.8 Conclusions and Recommendations
351 (1)
5.6.9 Critical Review
351 (1)
References
352 (5)
6 From LCA to Sustainability Assessment 357 (18)
6.1 Sustainability
357 (1)
6.2 The Three Dimensions of Sustainability
358 (3)
6.3 State of the Art of Methods
361 (7)
6.3.1 Life Cycle Assessment - LCA
361 (3)
6.3.2 Life Cycle Costing - LCC
364 (2)
6.3.3 Product-Related Social Life Cycle Assessment - SLCA
366 (2)
6.4 One Life Cycle Assessment or Three?
368 (2)
6.4.1 Option 1
368 (1)
6.4.2 Option 2
369 (1)
6.5 Conclusions
370 (1)
References
371 (4)
Appendix A Solution of Exercises 375 (6)
Appendix B Standard Report Sheet of Electricity Mix Germany (UBA 2000, Materials p. 179ff) Historic example, only for illustrative purposes 381 (4)
Acronyms/Abbreviations 385 (6)
Index 391

Esta primera guía práctica para la Evaluación del Ciclo de ISO-compliant de Vida (ACV) hace que esta poderosa herramienta inmediatamente accesible a los profesionales y estudiantes. Tras una introducción general sobre la filosofía y el propósito de LCA, el lector se toma a través de todas las etapas de un análisis completo de LCA, con cada paso ejemplificado por los datos de la vida real de un importante proyecto de LCA sobre envases de bebidas. Medidas como la huella de carbono y agua, con base en las más recientes normas y definiciones internacionales, se abordan.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer