Biblioteca
Normal view MARC view ISBD view

A history of vector analysis: The evolution of the idea of a vectorial system / Michael J. Crowe.

By: Crowe, Michael J.
Material type: materialTypeLabelBookPublisher: New York: Dover Pub., 1994Description: xvii, 270 p.: il.; 22 cm.ISBN: 0486679101 :.Subject(s): ANÁLISIS DE VECTORES -- HISTORIADDC classification: 515.63
Contents:
Chapter One THE EARLIEST TRADITIONS I. Introduction II. The Concept of the Parallelogram of Velocities and Forces III. Leibniz' Concept of a Geometry of Situation IV. The Concept of the Geometrical Representation of Complex Numbers V. Summary and Conclusion _ Notes Chapter Two SIR WILLIAM ROWAN HAMILTON AND QUATERNIONS I. Introduction: Hamiltonian Historiography II. Hamilton's Life and Fame III. Hamilton and Complex Numbers IV. Hamilton's Discovery of Quaternions V. Quaternions until Hamilton's Death (1865) VI. Summary and Conclusion _ Notes "Chapter Three OTHER EARLY VECTORIAL SYSTEMS, ESPECIALLY GRASSMANN'S THEORY OF EXTENSION" I. Introduction II. August Ferdinand Möbius and His Barycentric Calculus III. Giusto Bellavitis and His Calculus of Equipollences IV. Hermann Grassmann and His Calculus of Extension: Introduction V. Grassmann's Theorie der Ebbe und Flut VI. Grassmann's Ausdehnungslehre of 1844 VII. The Period from 1844 to 1862 VIII. "Grassmann's Ausdehnungslehre of 1862 and the Gradual, Limited Acceptance of His Work" IX. Matthew O'Brien _ Notes Chapter Four TRADITIONS IN VECTORIAL ANALYSIS FROM THE MIDDLE PERIOD OF ITS HISTORY I. Introduction II. Interest in Vectorial Analysis in Various Countries from 1841 to 1900 III. Peter Guthrie Tait: Advocate and Developer of Quaternions IV. Benjamin Peirce: Advocate of Quaternions in America V. James Clerk Maxwell: Critic of Quaternions VI. William Kingdom Clifford: Transition Figure Notes Chapter Five GIBBS AND HEAVISIDE AND THE DEVELOPMENT OF THE MODERN SYSTEM OF VECTOR ANALYSIS I. Introduction II. Josiah Willard Gibbs III. Gibbs' Early Work in Vector Analysis IV. Gibbs' Elements of Vector Analysis V. Gibbs' Other Work Pertaining to Vector Analysis VI. Oliver Heaviside VII. Heaviside's Electrical Papers VIII. Heaviside's Electromagnetic Theory IX. The Reception Given to Heaviside's Writings _ Conclusion _ Notes Chapter Six A STRUGGLE FOR EXISTENCE IN THE 1890'S I. Introduction II. "The "Struggle for Existence" III. Conclusions _ Notes CHAPTER SEVEN THE EMERGENCE OF THE MODERN SYSTEM OF VECTOR ANALYSIS: 1894-1910 I. Introduction II. Twelve Major Publications in Vector Analysis from 1894 to 1910 III. Summary and Conclusion _ Notes Chapter Eight SUMMARY AND CONCLUSIONS _ Notes Index
Summary: El 16 de octubre de 1843, Sir William Rowan Hamilton descubrió los cuaterniones y, en el mismo día, presentó su avance a la Real Academia Irlandesa. Mientras tanto, en un estilo menos dramática, un profesor de instituto alemán, Hermann Grassmann, estaba desarrollando otro sistema vectorial que involucra números hipercomplejos comparable a cuaterniones. Las creaciones de estos dos matemáticos llevaron a otros sistemas vectoriales, sobre todo el sistema de análisis vectorial formulada por Josiah Willard Gibbs y Oliver Heaviside y ahora emplea casi universalmente en las matemáticas, la física y la ingeniería. Sin embargo, el sistema de Gibbs-Heaviside ganó aceptación sólo después de décadas de debate y controversia en la segunda mitad del siglo XIX en relación con cuál de los sistemas de la competencia ofrece las mayores ventajas para la pedagogía y la práctica matemática. Este volumen, el primer estudio a gran escala de la evolución de los sistemas vectoriales, traza se levantare del concepto del vector del descubrimiento de los números complejos a través de los sistemas de números hipercomplejos creados por Hamilton y Grassmann a la aceptación final alrededor de 1910 del moderno sistema del análisis vectorial. El profesor Michael J. Crowe (Universidad de Notre Dame) analiza cada sistema vectorial importante, así como las motivaciones que llevaron a su creación, el desarrollo y la aceptación o rechazo. El enfoque vectorial revolucionó los métodos matemáticos y la enseñanza en el álgebra, la geometría y la ciencia física. Como explica el profesor Crowe, en estas áreas métodos cartesianos tradicionales fueron reemplazados por métodos vectoriales. También se presenta la historia de las ideas de la suma de vectores, resta, multiplicación, división (en aquellos sistemas en los que se produce) y la diferenciación. Su libro también contiene refrescantes retratos de las personalidades que participan en la competencia entre los distintos sistemas. Los profesores, estudiantes y profesionales de las matemáticas, la física y la ingeniería, así como cualquier persona interesada en la historia de las ideas científicas encontrarán este volumen a estar bien escrito, sólidamente argumentado, y excelentemente documentado. Los críticos han descrito como "un volumen fascinante", "una atractiva y penetrante estudio histórico" y "un libro excelente (eso), sin duda, siempre siendo la obra de referencia sobre el tema." En 1992 ganó un premio a la excelencia de la Fundación Jean Scott, de Francia.
List(s) this item appears in: PERT
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Vol info Copy number Status Date due Barcode Item holds
LIBRO - MATERIAL GENERAL LIBRO - MATERIAL GENERAL Bodega
Fondo general
Colección / Fondo / Acervo / Resguardo 515.63 C953h (Browse shelf) Ej. 1 1 Available 024626
Total holds: 0

Reimpresión. Originalmente publicado: Notre Dame University Press, 1967

Incluye bibliografía e indices

Chapter One THE EARLIEST TRADITIONS
I. Introduction
II. The Concept of the Parallelogram of Velocities and Forces
III. Leibniz' Concept of a Geometry of Situation
IV. The Concept of the Geometrical Representation of Complex Numbers
V. Summary and Conclusion
_ Notes
Chapter Two SIR WILLIAM ROWAN HAMILTON AND QUATERNIONS
I. Introduction: Hamiltonian Historiography
II. Hamilton's Life and Fame
III. Hamilton and Complex Numbers
IV. Hamilton's Discovery of Quaternions
V. Quaternions until Hamilton's Death (1865)
VI. Summary and Conclusion
_ Notes
"Chapter Three OTHER EARLY VECTORIAL SYSTEMS, ESPECIALLY GRASSMANN'S THEORY OF EXTENSION"
I. Introduction
II. August Ferdinand Möbius and His Barycentric Calculus
III. Giusto Bellavitis and His Calculus of Equipollences
IV. Hermann Grassmann and His Calculus of Extension: Introduction
V. Grassmann's Theorie der Ebbe und Flut
VI. Grassmann's Ausdehnungslehre of 1844
VII. The Period from 1844 to 1862
VIII. "Grassmann's Ausdehnungslehre of 1862 and the Gradual, Limited Acceptance of His Work"
IX. Matthew O'Brien
_ Notes
Chapter Four TRADITIONS IN VECTORIAL ANALYSIS FROM THE MIDDLE PERIOD OF ITS HISTORY
I. Introduction
II. Interest in Vectorial Analysis in Various Countries from 1841 to 1900
III. Peter Guthrie Tait: Advocate and Developer of Quaternions
IV. Benjamin Peirce: Advocate of Quaternions in America
V. James Clerk Maxwell: Critic of Quaternions
VI. William Kingdom Clifford: Transition Figure Notes
Chapter Five GIBBS AND HEAVISIDE AND THE DEVELOPMENT OF THE MODERN SYSTEM OF VECTOR ANALYSIS
I. Introduction
II. Josiah Willard Gibbs
III. Gibbs' Early Work in Vector Analysis
IV. Gibbs' Elements of Vector Analysis
V. Gibbs' Other Work Pertaining to Vector Analysis
VI. Oliver Heaviside
VII. Heaviside's Electrical Papers
VIII. Heaviside's Electromagnetic Theory
IX. The Reception Given to Heaviside's Writings
_ Conclusion
_ Notes
Chapter Six A STRUGGLE FOR EXISTENCE IN THE 1890'S
I. Introduction
II. "The "Struggle for Existence"
III. Conclusions
_ Notes
CHAPTER SEVEN THE EMERGENCE OF THE MODERN SYSTEM OF VECTOR ANALYSIS: 1894-1910
I. Introduction
II. Twelve Major Publications in Vector Analysis from 1894 to 1910
III. Summary and Conclusion
_ Notes
Chapter Eight SUMMARY AND CONCLUSIONS
_ Notes
Index

El 16 de octubre de 1843, Sir William Rowan Hamilton descubrió los cuaterniones y, en el mismo día, presentó su avance a la Real Academia Irlandesa. Mientras tanto, en un estilo menos dramática, un profesor de instituto alemán, Hermann Grassmann, estaba desarrollando otro sistema vectorial que involucra números hipercomplejos comparable a cuaterniones. Las creaciones de estos dos matemáticos llevaron a otros sistemas vectoriales, sobre todo el sistema de análisis vectorial formulada por Josiah Willard Gibbs y Oliver Heaviside y ahora emplea casi universalmente en las matemáticas, la física y la ingeniería. Sin embargo, el sistema de Gibbs-Heaviside ganó aceptación sólo después de décadas de debate y controversia en la segunda mitad del siglo XIX en relación con cuál de los sistemas de la competencia ofrece las mayores ventajas para la pedagogía y la práctica matemática. Este volumen, el primer estudio a gran escala de la evolución de los sistemas vectoriales, traza se levantare del concepto del vector del descubrimiento de los números complejos a través de los sistemas de números hipercomplejos creados por Hamilton y Grassmann a la aceptación final alrededor de 1910 del moderno sistema del análisis vectorial. El profesor Michael J. Crowe (Universidad de Notre Dame) analiza cada sistema vectorial importante, así como las motivaciones que llevaron a su creación, el desarrollo y la aceptación o rechazo. El enfoque vectorial revolucionó los métodos matemáticos y la enseñanza en el álgebra, la geometría y la ciencia física. Como explica el profesor Crowe, en estas áreas métodos cartesianos tradicionales fueron reemplazados por métodos vectoriales. También se presenta la historia de las ideas de la suma de vectores, resta, multiplicación, división (en aquellos sistemas en los que se produce) y la diferenciación. Su libro también contiene refrescantes retratos de las personalidades que participan en la competencia entre los distintos sistemas. Los profesores, estudiantes y profesionales de las matemáticas, la física y la ingeniería, así como cualquier persona interesada en la historia de las ideas científicas encontrarán este volumen a estar bien escrito, sólidamente argumentado, y excelentemente documentado. Los críticos han descrito como "un volumen fascinante", "una atractiva y penetrante estudio histórico" y "un libro excelente (eso), sin duda, siempre siendo la obra de referencia sobre el tema." En 1992 ganó un premio a la excelencia de la Fundación Jean Scott, de Francia.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer