CATÁLOGO EN LÍNEA
Biblioteca JAL

BIBLIOTECA

JORGE ÁLVAREZ LLERAS

Ensembles in Machine Learning Applications [electronic resource].

Colaborador(es): Tipo de material: TextoSeries Studies in Computational Intelligence | ; -373Descripción: XX, 252p. 78 illus., 28 illus. in color. online resourceISBN:
  • 9783642229107 99783642229107
Tema(s): Clasificación CDD:
  • 006.3 223
Recursos en línea:
Contenidos:
From the content: Facial Action Unit Recognition Using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classifiers -- On the Design of Low Redundancy Error-Correcting Output Codes -- Minimally-Sized Balanced Decomposition Schemes for Multi-Class Classification -- Bias-Variance Analysis of ECOC and Bagging Using Neural Nets -- Fast-ensembles of Minimum Redundancy Feature Selection.
Resumen: This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms advanced machine learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label (voting) to instances in a dataset and after that all votes are combined together to produce the final class or cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems. This book consists of 14 chapters, each of which can be read independently of the others. In addition to two previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in practice and to help to both researchers and engineers developing ensemble applications.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Imagen de cubierta Tipo de ítem Biblioteca actual Biblioteca de origen Colección Ubicación en estantería Signatura topográfica Materiales especificados Info Vol URL Copia número Estado Notas Fecha de vencimiento Código de barras Reserva de ítems Prioridad de la cola de reserva de ejemplar Reservas para cursos
DOCUMENTOS DIGITALES Biblioteca Jorge Álvarez Lleras Digital 006.3 223 (Navegar estantería(Abre debajo)) Ej. 1 1 Disponible D000356
Total de reservas: 0

From the content: Facial Action Unit Recognition Using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classifiers -- On the Design of Low Redundancy Error-Correcting Output Codes -- Minimally-Sized Balanced Decomposition Schemes for Multi-Class Classification -- Bias-Variance Analysis of ECOC and Bagging Using Neural Nets -- Fast-ensembles of Minimum Redundancy Feature Selection.

This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms advanced machine learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label (voting) to instances in a dataset and after that all votes are combined together to produce the final class or cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems. This book consists of 14 chapters, each of which can be read independently of the others. In addition to two previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in practice and to help to both researchers and engineers developing ensemble applications.

No hay comentarios en este titulo.

para colocar un comentario.


Código QR

BIBLIOTECA

JORGE ÁLVAREZ LLERAS
Información de la biblioteca

Horario

Lunes a Viernes:
6:30 am - 7:30 pm

Sábados:
8:00 am - 2:00 pm

Contacto

Teléfono: +57 601 668 3600

biblioteca@escuelaing.edu.co

Ubicación

Biblioteca Central: Bloque B

Biblioteca Satélite: Bloque G