CATÁLOGO EN LÍNEA
Biblioteca JAL

BIBLIOTECA

JORGE ÁLVAREZ LLERAS
Portada local
Portada local

Reinforced concrete : mechanics and design / James K. Wight, F.E. Richart, Jr., James G. Macgregor.

Por: Colaborador(es): Tipo de material: TextoDetalles de publicación: Upper Saddle River, N.J. : Pearson; Prentice Hall, 2012 .Edición: 6th edDescripción: xviii, 1157 p. : il. ; 26 cmISBN:
  • 9780132176521
  • 0132176521
Tema(s): Clasificación CDD:
  • 624.18341 23 W657r
Contenidos:
PREFACE xi ABOUT THE AUTHORS xv CHAPTER 1 INTRODUCTION 1-1 Reinforced Concrete Structures 1-2 Mechanics of Reinforced Concrete 1-3 Reinforced Concrete Members 1-4 Factors Affecting Choice of Reinforced Concrete for a Structure 1-5 Historical Development of Concrete and Reinforced Concrete as Structural Materials 1-6 Building Codes and the ACI Code CHAPTER 2 THE DESIGN PROCESS 2-1 Objectives of Design 2-2 The Design Process 2-3 Limit States and the Design of Reinforced Concrete 2-4 Structural Safety 2-5 Probabilistic Calculation of Safety Factors 2-6 Design Procedures Specified in the ACI Building Code 2-7 Load Factors and Load Combinations in the 2011 ACI Code 2-8 Loadings and Actions 2-9 Design for Economy 2-10 Sustainability 2-11 Customary Dimensions and Construction Tolerances 2-12 Inspection 2-13 Accuracy of Calculations 2-14 Handbooks and Design Aids CHAPTER 3 MATERIALS 3-1 Concrete 3-2 Behavior of Concrete Failing in Compression 3-3 Compressive Strength of Concrete 3-4 Strength Under Tensile and Multiaxial Loads 3-5 Stress–Strain Curves for Concrete 3-6 Time-Dependent Volume Changes 3-7 High-Strength Concrete 3-8 Lightweight Concrete 3-9 Fiber Reinforced Concrete 3-10 Durability of Concrete 3-11 Behavior of Concrete Exposed to High and Low Temperatures 3-12 Shotcrete 3-13 High-Alumina Cement 3-14 Reinforcement 3-15 Fiber-Reinforced Polymer (FRP) Reinforcement 3-16 Prestressing Steel CHAPTER 4 FLEXURE: BEHAVIOR AND NOMINAL STRENGTH OF BEAM SECTIONS 4-1 Introduction 4-2 Flexure Theory 4-3 Simplifications in Flexure Theory for Design 4-4 Analysis of Nominal Moment Strength for Singly Reinforced Beam Sections 4-5 Definition of Balanced Conditions 4-6 Code Definitions of Tension-Controlled and Compression-Controlled Sections 4-7 Beams with Compression Reinforcement 4-8 Analysis of Flanged Sections 4-9 Unsymmetrical Beam Sections CHAPTER 5 FLEXURAL DESIGN OF BEAM SECTIONS 5-1 Introduction 5-2 Analysis of Continuous One-Way Floor Systems 5-3 Design of Singly-Reinforced Beam Sections with Rectangular Compression Zones 5-4 Design of Doubly-Reinforced Beam Sections 5-5 Design of Continuous One-Way Slabs CHAPTER 6 SHEAR IN BEAMS 6-1 Introduction 6-2 Basic Theory 6-3 Behavior of Beams Failing in Shear 6-4 Truss Model of the Behavior of Slender Beams Failing in Shear 6-5 Analysis and Design of Reinforced Concrete Beams for Shear–ACI Code 6-6 Other Shear Design Methods 6-7 Hanger Reinforcement 6-8 Tapered Beams 6-9 Shear in Axially Loaded Members 6-10 Shear in Seismic Regions CHAPTER 7 TORSION 7-1 Introduction and Basic Theory 7-2 Behavior of Reinforced Concrete Members Subjected to Torsion 7-3 Design Methods for Torsion 7-4 Thin-Walled Tube/Plastic Space Truss Design Method 7-5 Design for Torsion and Shear–ACI Code 7-6 Application of ACI Code Design Method for Torsion CHAPTER 8 DEVELOPMENT, ANCHORAGE, AND SPLICING OF REINFORCEMENT 8-1 Introduction 8-2 Mechanism of Bond Transfer 8-3 Development Length 8-4 Hooked Anchorages 8-5 Headed and Mechanically Anchored Bars in Tension 8-6 Design for Anchorage 8-7 Bar Cutoffs and Development of Bars in Flexural Members 8-8 Reinforcement Continuity and Structural Integrity Requirements 8-9 Splices CHAPTER 9 SERVICEABILITY 9-1 Introduction 9-2 Elastic Analysis of Stresses in Beam Sections 9-3 Cracking 9-4 Deflections of Concrete Beams 9-5 Consideration of Deflections in Design 9-6 Frame Deflections 9-7 Vibrations 9-8 Fatigue CHAPTER 10 CONTINUOUS BEAMS AND ONE-WAY SLABS 10-1 Introduction 10-2 Continuity in Reinforced Concrete Structures 10-3 Continuous Beams 10-4 Design of Girders 10-5 Joist Floors 10-6 Moment Redistribution CHAPTER 11 COLUMNS: COMBINED AXIAL LOAD AND BENDING 11-1 Introduction 11-2 Tied and Spiral Columns 11-3 Interaction Diagrams 11-4 Interaction Diagrams for Reinforced Concrete Columns 11-5 Design of Short Columns 11-6 Contributions of Steel and Concrete to Column Strength 11-7 Biaxially Loaded Columns CHAPTER 12 SLENDER COLUMNS 12-1 Introduction 12-2 Behavior and Analysis of Pin-Ended Columns 12-3 Behavior of Restrained Columns in Nonsway Frames 12-4 Design of Columns in Nonsway Frames 12-5 Behavior of Restrained Columns in Sway Frames 12-6 Calculation of Moments in Sway Frames Using Second-Order Analyses 12-7 Design of Columns in Sway Frames 12-8 General Analysis of Slenderness Effects 12-9 Torsional Critical Load CHAPTER 13 TWO-WAY SLABS: BEHAVIOR, ANALYSIS, AND DESIGN 13-1 Introduction 13-2 History of Two-Way Slabs 13-3 Behavior of Slabs Loaded to Failure in Flexure 13-4 Analysis of Moments in Two-Way Slabs 13-5 Distribution of Moments in Slabs 13-6 Design of Slabs 13-7 The Direct-Design Method 13-8 Equivalent-Frame Methods 13-9 Use of Computers for an Equivalent-Frame Analysis 13-10 Shear Strength of Two-Way Slabs 13-11 Combined Shear and Moment Transfer in Two-Way Slabs 13-12 Details and Reinforcement Requirements 13-13 Design of Slabs Without Beams 13-14 Design of Slabs with Beams in Two Directions 13-15 Construction Loads on Slabs 13-16 Deflections in Two-Way Slab Systems 13-17 Use of Post-Tensioning CHAPTER 14 TWO-WAY SLABS: ELASTIC AND YIELD-LINE ANALYSES 14-1 Review of Elastic Analysis of Slabs 14-2 Design Moments from a Finite-Element Analysis 14-3 Yield-Line Analysis of Slabs: Introduction 14-4 Yield-Line Analysis: Applications for Two-Way Slab Panels 14-5 Yield-Line Patterns at Discontinuous Corners 14-6 Yield-Line Patterns at Columns or at Concentrated Loads CHAPTER 15 FOOTINGS 15-1 Introduction 15-2 Soil Pressure Under Footings 15-3 Structural Action of Strip and Spread Footings 15-4 Strip or Wall Footings 15-5 Spread Footings 15-6 Combined Footings 15-7 Mat Foundations 15-8 Pile Caps CHAPTER 16 SHEAR FRICTION, HORIZONTAL SHEAR TRANSFER, AND COMPOSITE CONCRETE BEAMS 16-1 Introduction 16-2 Shear Friction 16-3 Composite Concrete Beams CHAPTER 17 DISCONTINUITY REGIONS AND STRUT-AND-TIE MODELS 17-1 Introduction 17-2 Design Equation and Method of Solution 17-3 Struts 17-4 Ties 17-5 Nodes and Nodal Zones 17-6 Common Strut-and-Tie Models 17-7 Layout of Strut-and-Tie Models 17-8 Deep Beams 17-9 Continuous Deep Beams 17-10 Brackets and Corbels 17-11 Dapped Ends 17-12 Beam–Column Joints 17-13 Bearing Strength 17-14 T-Beam Flanges CHAPTER 18 WALLS AND SHEAR WALLS 18-1 Introduction 18-2 Bearing Walls 18-3 Retaining Walls 18-4 Tilt-Up Walls 18-5 Shear Walls 18-6 Lateral Load-Resisting Systems for Buildings 18-7 Shear Wall—Frame Interaction 18-8 Coupled Shear Walls 18-9 Design of Structural Walls–General 18-10 Flexural Strength of Shear Walls 18-11 Shear Strength of Shear Walls 18-12 Critical Loads for Axially Loaded Walls CHAPTER 19 DESIGN FOR EARTHQUAKE RESISTANCE 19-1 Introduction 19-2 Seismic Response Spectra 19-3 Seismic Design Requirements 19-4 Seismic Forces on Structures 19-5 Ductility of Reinforced Concrete Members 19-6 General ACI Code Provisions for Seismic Design 19-7 Flexural Members in Special Moment Frames 19-8 Columns in Special Moment Frames 19-9 Joints of Special Moment Frames 19-10 Structural Diaphragms 19-11 Structural Walls 19-12 Frame Members not Proportioned to Resist Forces Induced by Earthquake Motions 19-13 Special Precast Structures 19-14 Foundations APPENDIX A APPENDIX B INDEX
Resumen: Es un texto perfecto para los profesionales en el campo que necesitan una referencia completa sobre estructuras de hormigón y el diseño de hormigón armado. Diseño de hormigón armado abarca tanto el arte y la ciencia de la ingeniería. Este libro presenta la teoría de hormigón armado como una aplicación directa de las leyes de la estática y mecánica de materiales. Además, hace hincapié en que un diseño exitoso no sólo satisface las normas de diseño, sino que también es capaz de ser construido en una manera oportuna y por un costo razonable. Un enfoque de múltiples niveles hace que el hormigón armado: Mecánica y Diseño de libros de texto de un excepcional para una gran variedad de cursos universitarios sobre el diseño de hormigón armado. Los temas se suelen incorporar en un nivel fundamental, y luego pasar a niveles más altos, y se exigirán experiencia educativa previa y el desarrollo de los criterios de ingeniería.
Lista(s) en las que aparece este ítem: CONCRETO
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Imagen de cubierta Tipo de ítem Biblioteca actual Biblioteca de origen Colección Ubicación en estantería Signatura topográfica Materiales especificados Info Vol URL Copia número Estado Notas Fecha de vencimiento Código de barras Reserva de ítems Prioridad de la cola de reserva de ejemplar Reservas para cursos
LIBRO - MATERIAL GENERAL Biblioteca Jorge Álvarez Lleras Fondo general Colección / Fondo / Acervo / Resguardo 624.18341 W657r (Navegar estantería(Abre debajo)) Ej. 1 1 Disponible 023714
Total de reservas: 0

ed. revisada de: Reinforced concrete / James G. MacGregor, James K. Wight. 5th ed. 2009.

Incluye indices

PREFACE xi

ABOUT THE AUTHORS xv

CHAPTER 1 INTRODUCTION

1-1 Reinforced Concrete Structures

1-2 Mechanics of Reinforced Concrete

1-3 Reinforced Concrete Members

1-4 Factors Affecting Choice of Reinforced Concrete for a Structure

1-5 Historical Development of Concrete and Reinforced Concrete as Structural Materials

1-6 Building Codes and the ACI Code

CHAPTER 2 THE DESIGN PROCESS

2-1 Objectives of Design

2-2 The Design Process

2-3 Limit States and the Design of Reinforced Concrete

2-4 Structural Safety

2-5 Probabilistic Calculation of Safety Factors

2-6 Design Procedures Specified in the ACI Building Code

2-7 Load Factors and Load Combinations in the 2011 ACI Code

2-8 Loadings and Actions

2-9 Design for Economy

2-10 Sustainability

2-11 Customary Dimensions and Construction Tolerances

2-12 Inspection

2-13 Accuracy of Calculations

2-14 Handbooks and Design Aids

CHAPTER 3 MATERIALS

3-1 Concrete

3-2 Behavior of Concrete Failing in Compression

3-3 Compressive Strength of Concrete

3-4 Strength Under Tensile and Multiaxial Loads

3-5 Stress–Strain Curves for Concrete

3-6 Time-Dependent Volume Changes

3-7 High-Strength Concrete

3-8 Lightweight Concrete

3-9 Fiber Reinforced Concrete

3-10 Durability of Concrete

3-11 Behavior of Concrete Exposed to High and Low Temperatures

3-12 Shotcrete

3-13 High-Alumina Cement

3-14 Reinforcement

3-15 Fiber-Reinforced Polymer (FRP) Reinforcement

3-16 Prestressing Steel

CHAPTER 4 FLEXURE: BEHAVIOR AND NOMINAL STRENGTH OF BEAM SECTIONS

4-1 Introduction

4-2 Flexure Theory

4-3 Simplifications in Flexure Theory for Design

4-4 Analysis of Nominal Moment Strength for Singly Reinforced Beam Sections

4-5 Definition of Balanced Conditions

4-6 Code Definitions of Tension-Controlled and Compression-Controlled Sections

4-7 Beams with Compression Reinforcement

4-8 Analysis of Flanged Sections

4-9 Unsymmetrical Beam Sections

CHAPTER 5 FLEXURAL DESIGN OF BEAM SECTIONS

5-1 Introduction

5-2 Analysis of Continuous One-Way Floor Systems

5-3 Design of Singly-Reinforced Beam Sections with Rectangular Compression Zones

5-4 Design of Doubly-Reinforced Beam Sections

5-5 Design of Continuous One-Way Slabs

CHAPTER 6 SHEAR IN BEAMS

6-1 Introduction

6-2 Basic Theory

6-3 Behavior of Beams Failing in Shear

6-4 Truss Model of the Behavior of Slender Beams Failing in Shear

6-5 Analysis and Design of Reinforced Concrete Beams for Shear–ACI Code

6-6 Other Shear Design Methods

6-7 Hanger Reinforcement

6-8 Tapered Beams

6-9 Shear in Axially Loaded Members

6-10 Shear in Seismic Regions

CHAPTER 7 TORSION

7-1 Introduction and Basic Theory

7-2 Behavior of Reinforced Concrete Members Subjected to Torsion

7-3 Design Methods for Torsion

7-4 Thin-Walled Tube/Plastic Space Truss Design Method

7-5 Design for Torsion and Shear–ACI Code

7-6 Application of ACI Code Design Method for Torsion

CHAPTER 8 DEVELOPMENT, ANCHORAGE, AND SPLICING OF REINFORCEMENT

8-1 Introduction

8-2 Mechanism of Bond Transfer

8-3 Development Length

8-4 Hooked Anchorages

8-5 Headed and Mechanically Anchored Bars in Tension

8-6 Design for Anchorage

8-7 Bar Cutoffs and Development of Bars in Flexural Members

8-8 Reinforcement Continuity and Structural Integrity Requirements

8-9 Splices

CHAPTER 9 SERVICEABILITY

9-1 Introduction

9-2 Elastic Analysis of Stresses in Beam Sections

9-3 Cracking

9-4 Deflections of Concrete Beams

9-5 Consideration of Deflections in Design

9-6 Frame Deflections

9-7 Vibrations

9-8 Fatigue

CHAPTER 10 CONTINUOUS BEAMS AND ONE-WAY SLABS

10-1 Introduction

10-2 Continuity in Reinforced Concrete Structures

10-3 Continuous Beams

10-4 Design of Girders

10-5 Joist Floors

10-6 Moment Redistribution

CHAPTER 11 COLUMNS: COMBINED AXIAL LOAD AND BENDING

11-1 Introduction

11-2 Tied and Spiral Columns

11-3 Interaction Diagrams

11-4 Interaction Diagrams for Reinforced Concrete Columns

11-5 Design of Short Columns

11-6 Contributions of Steel and Concrete to Column Strength

11-7 Biaxially Loaded Columns

CHAPTER 12 SLENDER COLUMNS

12-1 Introduction

12-2 Behavior and Analysis of Pin-Ended Columns

12-3 Behavior of Restrained Columns in Nonsway Frames

12-4 Design of Columns in Nonsway Frames

12-5 Behavior of Restrained Columns in Sway Frames

12-6 Calculation of Moments in Sway Frames Using Second-Order Analyses

12-7 Design of Columns in Sway Frames

12-8 General Analysis of Slenderness Effects

12-9 Torsional Critical Load

CHAPTER 13 TWO-WAY SLABS: BEHAVIOR, ANALYSIS, AND DESIGN

13-1 Introduction

13-2 History of Two-Way Slabs

13-3 Behavior of Slabs Loaded to Failure in Flexure

13-4 Analysis of Moments in Two-Way Slabs

13-5 Distribution of Moments in Slabs

13-6 Design of Slabs

13-7 The Direct-Design Method

13-8 Equivalent-Frame Methods

13-9 Use of Computers for an Equivalent-Frame Analysis

13-10 Shear Strength of Two-Way Slabs

13-11 Combined Shear and Moment Transfer in Two-Way Slabs

13-12 Details and Reinforcement Requirements

13-13 Design of Slabs Without Beams

13-14 Design of Slabs with Beams in Two Directions

13-15 Construction Loads on Slabs

13-16 Deflections in Two-Way Slab Systems

13-17 Use of Post-Tensioning

CHAPTER 14 TWO-WAY SLABS: ELASTIC AND YIELD-LINE ANALYSES

14-1 Review of Elastic Analysis of Slabs

14-2 Design Moments from a Finite-Element Analysis

14-3 Yield-Line Analysis of Slabs: Introduction

14-4 Yield-Line Analysis: Applications for Two-Way Slab Panels

14-5 Yield-Line Patterns at Discontinuous Corners

14-6 Yield-Line Patterns at Columns or at Concentrated Loads

CHAPTER 15 FOOTINGS

15-1 Introduction

15-2 Soil Pressure Under Footings

15-3 Structural Action of Strip and Spread Footings

15-4 Strip or Wall Footings

15-5 Spread Footings

15-6 Combined Footings

15-7 Mat Foundations

15-8 Pile Caps

CHAPTER 16 SHEAR FRICTION, HORIZONTAL SHEAR TRANSFER, AND COMPOSITE CONCRETE BEAMS

16-1 Introduction

16-2 Shear Friction

16-3 Composite Concrete Beams

CHAPTER 17 DISCONTINUITY REGIONS AND STRUT-AND-TIE MODELS

17-1 Introduction

17-2 Design Equation and Method of Solution

17-3 Struts

17-4 Ties

17-5 Nodes and Nodal Zones

17-6 Common Strut-and-Tie Models

17-7 Layout of Strut-and-Tie Models

17-8 Deep Beams

17-9 Continuous Deep Beams

17-10 Brackets and Corbels

17-11 Dapped Ends

17-12 Beam–Column Joints

17-13 Bearing Strength

17-14 T-Beam Flanges

CHAPTER 18 WALLS AND SHEAR WALLS

18-1 Introduction

18-2 Bearing Walls

18-3 Retaining Walls

18-4 Tilt-Up Walls

18-5 Shear Walls

18-6 Lateral Load-Resisting Systems for Buildings

18-7 Shear Wall—Frame Interaction

18-8 Coupled Shear Walls

18-9 Design of Structural Walls–General

18-10 Flexural Strength of Shear Walls

18-11 Shear Strength of Shear Walls

18-12 Critical Loads for Axially Loaded Walls

CHAPTER 19 DESIGN FOR EARTHQUAKE RESISTANCE

19-1 Introduction

19-2 Seismic Response Spectra

19-3 Seismic Design Requirements

19-4 Seismic Forces on Structures

19-5 Ductility of Reinforced Concrete Members

19-6 General ACI Code Provisions for Seismic Design

19-7 Flexural Members in Special Moment Frames

19-8 Columns in Special Moment Frames

19-9 Joints of Special Moment Frames

19-10 Structural Diaphragms

19-11 Structural Walls

19-12 Frame Members not Proportioned to Resist Forces Induced by Earthquake Motions

19-13 Special Precast Structures

19-14 Foundations

APPENDIX A

APPENDIX B

INDEX

Es un texto perfecto para los profesionales en el campo que necesitan una referencia completa sobre estructuras de hormigón y el diseño de hormigón armado. Diseño de hormigón armado abarca tanto el arte y la ciencia de la ingeniería. Este libro presenta la teoría de hormigón armado como una aplicación directa de las leyes de la estática y mecánica de materiales. Además, hace hincapié en que un diseño exitoso no sólo satisface las normas de diseño, sino que también es capaz de ser construido en una manera oportuna y por un costo razonable. Un enfoque de múltiples niveles hace que el hormigón armado: Mecánica y Diseño de libros de texto de un excepcional para una gran variedad de cursos universitarios sobre el diseño de hormigón armado. Los temas se suelen incorporar en un nivel fundamental, y luego pasar a niveles más altos, y se exigirán experiencia educativa previa y el desarrollo de los criterios de ingeniería.

No hay comentarios en este titulo.

para colocar un comentario.

Haga clic en una imagen para verla en el visor de imágenes

Portada local


Código QR

BIBLIOTECA

JORGE ÁLVAREZ LLERAS
Información de la biblioteca

Horario

Lunes a Viernes:
6:30 am - 7:30 pm

Sábados:
8:00 am - 2:00 pm

Contacto

Teléfono: +57 601 668 3600

biblioteca@escuelaing.edu.co

Ubicación

Biblioteca Central: Bloque B

Biblioteca Satélite: Bloque G