000 07081nam a2200313za04500
001 17288
008 050703s2011 xxu eng d
020 _a9781441977595 99781441977595
082 _a621.3815
_b223
100 _aTong, Xingcun Colin.
_eauthor.
_935322
245 _aAdvanced Materials for Thermal Management of Electronic Packaging
_h[electronic resource] /
_cby Xingcun Colin Tong.
300 _aXXII, 618 p.
_bonline resource.
490 _aSpringer Series in Advanced Microelectronics
490 _x-1437-0387 ;
_v-30
505 _aCH. 1. Thermal managing fundamentals and design guide in electronic packaging -- 1.1 Introduction -- 1.2 Thermal management challenges and common -- concerns -- 1.3 Fundamentals of heat transfer -- 1.4 Thermal management solutions -- 1.5 Design for advanced thermal management of electronic packaging -- 1.6 Materials selection for advanced thermal management -- 1.7 Environmental compliance of thermal managing materials -- CH. 2. Characterization methodology of thermal managing materials -- 2.1 Thermal properties and measurement techniques -- 2.2 Electrical properties and measurement techniques -- 2.3 Thermomechanical characterization -- 2.4 Analytical techniques for materials characterization -- 2.5 Surface finish and contact interface compatibility -- 2.6 Reliability analysis and environmental performance evaluation -- CH. 3. Electronic packaging materials and their thermal managements -- 3.1 Materials selection for electronic packaging -- 3.2 Ceramics and semiconductors -- 3.3 Electronic glasses -- 3.4 Polymers -- 3.5 Monolithic metals -- 3.6 Metallic composites -- 3.7 Multimaterial laminates -- 3.8 Printed Circuit Board (PCB) Materials -- 3.9 Thermal interface materials -- 3.10 Advanced thermally conductive materials -- CH. 4. THERMALLY conductive carbonaceous materials and carbon matrix composites -- 4.1 Introduction -- 4.2 Natural and industrial graphite -- 4.3 Pyrolytic graphite -- 4.4 Graphite/Carbon Foams -- 4.5 Thermally conductive carbon fibers -- 4.6 Diamond -- 4.7 Carbon Nanotubes -- 4.8 Carbon/carbon composites -- CH. 5. Thermally conductive polymer matrix composites -- 5.1 Introduction -- 5.2 Polymer matrix types -- 5.3 Reinforcements selection and its effect on thermal conductivity -- 5.4 General fabrication and manufacturing processes -- 5.5 Types and applications for thermal management -- CH. 6. High thermal conductivity metal matrix composites -- 6.1 Introduction -- 6.2 Processing of metal matrix composites -- 6.3 Aluminum matrix composites -- 6.4 Copper matrix composites -- 6.5 Other metal matrix composites -- CH. 7. Thermally conductive ceramic matrix composites -- 7.1 Introduction -- 7.2 Diamond-SiC composites -- 7.3 Carbon-SiC Composites -- 7.4 Reaction-Bonded SiC -- 7.5 Aluminum-toughened SiC -- 7.6 CNT/Ceramic- carbon nanotube composites -- CH. 8. Thermal interface materials in electronic packaging -- 8.1 Thermal contact conductance and requirement for thermal interface materials -- 8.2 Metallic thermal interface materials -- 8.3 Thermal grease -- 8.4 Thermally conductive elastomer materials -- 8.5 Phase change materials -- 8.6 Polymer solder hybrid materials -- 8.7 Fiber-reinforced thermal interface materials -- 8.8 Graphite based thermal interface material -- 8.9 Nanotechnology based thermal interface materials -- 8.10 Thermal interface materials selection -- CH. 9. Materials and design of advanced heat spreader and air cooling heat sink -- 9.1 Introduction -- 9.2 Spreading and constriction resistance -- 9.3 Type of heat spreaders and their materials selection -- 9.4 Air cooling heat sink -- 9.4.1 Heat sink design constraints and design parameters -- 9.5 Nanostructure heat sink and complex spreader sink -- CH. 10. Liquid cooling devices and materials selection -- 10.1 Introduction -- 10.2 Indirect single-phase liquid cooling -- 10.3 Direct immersion cooling -- 10.4 Spray cooling and jet impingement -- 10.5 Heat pipe cooling -- 10.6 Refrigeration cooling -- 10.7 High-flux cooling with phase-change heat transfer -- CH. 11. Thermoelectric cooling through thermoelectric materials -- 11.1 Introduction -- 11.2 Thermoelectric effects -- 11.3 Design and architecture of thermoelectric cooling devices -- 11.4 Thermoelectric materials and future development trends -- CH. 12. Development and applications of advanced thermal managing materials -- 12.1 Materials development routine and methodology -- 12.2 Smart composites and multifunctional materials for thermal management -- 12.3 Thermal managing materials with enhanced EMI shielding and absorbing performance -- 12.4 Applications -- 12.5 Future trends.-.
520 _aThe need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility with the die and electronic packaging. In response to critical needs, there have been revolutionary advances in thermal management materials and technologies for active and passive cooling that promise integrable and cost-effective thermal management solutions. This book meets the need for a comprehensive approach to advanced thermal management in electronic packaging, with coverage of the fundamentals of heat transfer, component design guidelines, materials selection and assessment, air, liquid, and thermoelectric cooling, characterization techniques and methodology, processing and manufacturing technology, balance between cost and performance, and application niches. The final chapter presents a roadmap and future perspective on developments in advanced thermal management materials for electronic packaging. Key Features: Covers ceramics and glasses, polymers, metals, metallic composites, multi-material laminates, carbonaceous materials, and carbon-matrix composites Provides the reader with a comprehensive understanding of thermal management solutions Includes fundamentals of heat transfer and materials characterization techniques Assesses cost and performance in thermal management
650 _aEngineering.
_996
650 _933899
_aOPTICAL AND ELECTRONIC MATERIALS
650 _933897
_aOPRICAL MATERIALS
650 _934526
_aELECTRONIC CIRCUITS AND DEVICES
650 _934207
_aPHYSICS
650 _934207
_aPHYSICS
650 _933702
_aENGINEERING THERMODYNAMICS, HEAT AND MASS TRANSFER
650 _933664
_aELECTRONICS AND MICROELECTRONICS, INDTRUMENTATION
650 _933659
_aELECTRONICS
710 _aSpringerLink (Online service)
_9111
856 _uhttp://springer.escuelaing.metaproxy.org/book/10.1007/978-1-4419-7759-5
_yir a documento
_qURL
942 _2ddc
_cCF
999 _c13913
_d13913