000 09892cam a22002774a 4500
999 _c17246
_d17246
001 13911302
005 20200317144253.0
008 050325s2005 enka b 001 0 eng c
020 _a1852339578
040 _aCOO
_cCOO
_dOCLCQ
_dDLC
082 0 0 _a629.1326
_222
_bC352m
100 1 _aCastillo, P.
_q(Pedro)
_9565
245 1 0 _aModelling and control of mini-flying machines /
_cPedro Castillo, Rogelio Lozano, and Alejandro E. Dzul.
260 _aLondon ;
_aNew York :
_bSpringer,
_cc2005.
300 _axvi, 251 p. :
_bil. ;
_c25 cm.
504 _aIncluye Bibliografía e indices
505 _a1 Introduction and Historical Background ................... 1 1.1 Definitions ....................... ..................... 2 1.2 Early Concepts of VTOL Aircraft ......................... 3 1.3 Configuration of the Rotorcraft ............ ... ........... . 12 1.3.1 Conventional Main Rotor/Tail Rotor Configuration.... 12 1.3.2 Single Rotor Configuration ......................... 12 1.3.3 Twin Rotor in Coaxial Configuration ................ 13 1.3.4 Twin Rotor Side by Side ........................... 13 1.3.5 Multi-rotors ..................................... 15 1.4 New Configurations of UAVs .............................. 15 2 The PVTOL Aircraft .................................... 23 2.1 Introduction ................ .......................... 23 2.2 System Description ..................................... 24 2.3 Control Strategy ........................................ 25 2.3.1 Control of the Vertical Displacement ................. 26 2.3.2 Control of the Roll Angle and the Horizontal Displacement .................................... 26 2.4 Real-time Experimental Results ........................... 31 2.4.1 Experiment using a Quad-Rotor Rotorcraft ........... 31 2.4.2 Experimental Platform Using Vision ................. 34 2.5 Conclusion ................ ........................... 37 3 The Quad-rotor Rotorcraft .............................. 39 3.1 Introduction ................ ..... ...... ................. 39 3.2 Dynamic M odel ................ ..... ...... .............. 41 3.2.1 Characteristics of the Quad-rotor Rotorcraft .......... 41 3.2.2 System Description ............................... 43 3.3 Control Strategy ................ ...................... 47 3.3.1 Altitude and Yaw Control .......................... 48 3.3.2 Roll Control (0, y) ................................ 49 3.3.3 Pitch Control (0, x) ............................. . 52 3.4 Experimental Results ............................... ... 53 3.4.1 Platform Description ............................ . 53 3.4.2 Controller Parameter Tuning .................. .... 55 3.4.3 Experiment ..................................... 56 3.5 Conclusion .......................................... 59 4 Robust Prediction-based Control for Unstable Delay Systems .................................... .. .. .. 61 4.1 Introduction ................ ......................... 61 4.2 Problem Formulation ................................... 63 4.3 d-Step Ahead Prediction Scheme ......................... 68 4.4 Prediction-based State Feedback Control ................... 69 4.5 Stability of the Closed-loop System ................... .... 71 4.6 Application to the Yaw Control of a Mini-helicopter ......... 72 4.6.1 Characteristics of MaRTE OS ....................... 73 4.6.2 Real-time Implementation .......................... 74 4.6.3 Experimental Results .............................. 76 4.7 Conclusion ................ .......................... 79 5 Modelling and Control of Mini-helicopters ................ 81 5.1 Introduction ................ ......................... 81 5.2 Newton-Euler M odel ............................ ........ 82 5.2.1 Standard Helicopter ............................... 82 5.2.2 Tandem Helicopter .............................. . 87 5.2.3 Coaxial Helicopter ............................. 91 5.2.4 Adapted Dynamic Model for Control Design .......... 94 5.3 Euler-Lagrange Model ................................. . 97 5.4 Nonlinear Control Strategy .............................. 102 5.5 Simulations ...........................................113 6 Helicopter in a Vertical Flying Stand .................... 121 6.1 Introduction .......................................... 121 6.2 Dynamic Model ............... ......................123 6.3 Adaptive Altitude Robust Control Design .................. 126 6.4 Experimental Results ............... ................. . 130 6.4.1 Hardware ..................................... 130 6.4.2 Experiment .......................... .......... . 131 6.5 Conclusion ................................ ........... 132 7 Modelling and Control of a Tandem-Wing Tail-Sitter UAV 133 7.1 Introduction ........................................... 133 7.2 Tail-Sitters: A Historical Perspective ....................... 134 7.3 Applications for a Tail-Sitter UAV ........................135 7.3.1 Defence Applications ............................. 136 7.3.2 Civilian Applications ............. ....... ......... 136 7.4 The T-Wing: A Tandem-Wing Tail-Sitter UAV ............. 137 7.5 Description of the T-Wing Vehicle ............... . . ... 139 7.5.1 Typical Flight Path for the T-Wing Vehicle ..... ..... 139 7.6 6-DOF Nonlinear Model ..................................141 7.6.1 Derivation of Rigid Body Equations of Motion ........ 142 7.6.2 Orientation of the Aircraft ....................... .. 146 7.6.3 Equations of Motion ....................... . .. . 150 7.7 Real-time Flight Simulation ............................155 7.8 Hover Control Model .................................. 156 7.8.1 Vertical Flight Controllers .................. ......157 7.9 Flight of T-W ing Vehicle ......... ......... ....... ..... . 162 7.10 Conclusion .................................... ... 164 8 Modelling and Control of Small Autonomous Airships .... 165 8.1 Introduction ........................................ 165 8.2 Euler-Lagrange Modelling ............... ........... .. . 167 8.2.1 Kinematics .................................. ..167 8.2.2 Dynamics ................. ... ...... .........170 8.2.3 Propulsion ..................................... 172 8.3 Stabilization Problem ................................... 174 8.4 Simulation Results................. ................... 179 8.5 Conclusions ................................... .. ... 182 8.6 Nomenclature ................ ....................... 183 9 Sensors, Modems and Microcontrollers for UAVs ......... 185 9.1 Polhemus Electromagnetic Sensor ...................... . 186 9.1.1 Components ................................... 186 9.2 Inertial Navigation System ..................... ..... .. . 187 9.3 Accelerometers .................................... ...188 9.3.1 Accelerometer Principles .. . ................. . . .. 189 9.3.2 Applicability of Accelerometers ................... 198 9.4 Inclinometers ............... ....................... ..... 199 9.5 Altimeters .........................................199 9.6 Gyroscopes ......................................... 201 9.6.1 Types of Gyroscopes ........................ ... . 203 9.6.2 Uses of Gyroscopes ............... .......... ... 209 9.7 Inertial Measurement Unit (IMU) ................... ......212 9.8 Magnetic Compasses ................................... 213 9.9 Global Positioning System (GPS) .................. ..... 214 9.9.1 Elements ................................... .. . 216 9.10 Vision Sensors ....................................... 219 9.11 Ideal Sensor ..................................... .... 221 9.12 Modems ................................. ... ..... ..221 9.12.1 Radio Modems .................................. 223 9.13 Microcontrollers ........................................ 224 9.13.1 Fabrication Techniques ........................... 225 9.13.2 Applications ...................................... 226 9.13.3 Microcontroller Programming Languages ............. 228 9.14 Real-time Operating System .............................229 9.14.1 Some Definitions ..................................230
520 _aModelling and Control of Mini-Flying Machines es una exposición de modelos desarrollados para ayudar en el control de movimiento de los diversos tipos de mini-aviones: - Planar vertical de despegue y aterrizaje de las aeronaves; - Helicópteros; - Quadrotor mini-helicópteros; - Otras aeronaves de ala fija; - Dirigibles. Para cada uno de estos se propugna: - Modelos detallados derivados de los métodos de Euler-Lagrange; - Las estrategias de control y las propiedades de convergencia adecuado no lineal; - Comparaciones experimentales en tiempo real del rendimiento de los algoritmos de control; - Revisión de los principales sensores, en pensión electrónica, la arquitectura en tiempo real y sistemas de comunicación para el control de la máquina mini-vuelo, incluyendo la discusión de su desempeño; - Explicación del uso del filtro de Kalman se detalla a volar la localización de la máquina. Para los investigadores y estudiantes en el control no lineal y sus aplicaciones Modelización y Control de Máquinas Mini-Flying proporciona información valiosa a la aplicación de técnicas no lineales en tiempo real en un área siempre un reto.
650 0 _aAVIONES
_xMODELOS
_xRADIO CONTROL
_9566
650 0 _aAVIONES NO TRIPULADOS
_xSISTEMAS DE CONTROL
_9567
650 0 _9568
_aHELICÓPTEROS
_xMODELOS
_xSISTEMAS DE CONTROL
650 0 _aMAQUINAS VOLADORAS
_xMODELOS
_9569
700 1 _aDzul, Alejandro E.
_9571
700 1 _9570
_aLozano, R.
_q(Rogelio),
_d1954
942 _2ddc
_cBK