CATÁLOGO EN LÍNEA
Biblioteca JAL

BIBLIOTECA

JORGE ÁLVAREZ LLERAS

Bayesian Inference for Probabilistic Risk Assessment [electronic resource]: A Practitioner's Guidebook / Dana Kelly.

Por: Colaborador(es): Tipo de material: TextoSeries Springer Series in Reliability Engineering | Descripción: XII, 225p. 98 illus., 40 illus. in color. online resourceISBN:
  • 9781849961875 99781849961875
Tema(s): Clasificación CDD:
  • 658.56 223
Recursos en línea:
Contenidos:
1. Introduction and Motivation -- 2. Introduction to Bayesian Inference -- 3. Bayesian Inference for Common Aleatory Models -- 4. Bayesian Model Checking -- 5. Time Trends for Binomial and Poisson Data -- 6. Checking Convergence to Posterior Distribution -- 7. Hierarchical Bayes Models for Variability -- 8. More Complex Models for Random Durations -- 9. Modeling Failure with Repair -- 10. Bayesian Treatment of Uncertain Data -- 11. Bayesian Regression Models -- 12. Bayesian Inference for Multilevel Fault Tree Models -- 13. Additional Topics.
Resumen: Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis "building blocks" that can be modified, combined, or used as-is to solve a variety of challenging problems.The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking.Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Imagen de cubierta Tipo de ítem Biblioteca actual Biblioteca de origen Colección Ubicación en estantería Signatura topográfica Materiales especificados Info Vol URL Copia número Estado Notas Fecha de vencimiento Código de barras Reserva de ítems Prioridad de la cola de reserva de ejemplar Reservas para cursos
DOCUMENTOS DIGITALES Biblioteca Jorge Álvarez Lleras Digital 658.56 223 (Navegar estantería(Abre debajo)) Ej. 1 1 Disponible D000229
Total de reservas: 0

1. Introduction and Motivation -- 2. Introduction to Bayesian Inference -- 3. Bayesian Inference for Common Aleatory Models -- 4. Bayesian Model Checking -- 5. Time Trends for Binomial and Poisson Data -- 6. Checking Convergence to Posterior Distribution -- 7. Hierarchical Bayes Models for Variability -- 8. More Complex Models for Random Durations -- 9. Modeling Failure with Repair -- 10. Bayesian Treatment of Uncertain Data -- 11. Bayesian Regression Models -- 12. Bayesian Inference for Multilevel Fault Tree Models -- 13. Additional Topics.

Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis "building blocks" that can be modified, combined, or used as-is to solve a variety of challenging problems.The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking.Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models.

No hay comentarios en este titulo.

para colocar un comentario.


Código QR

BIBLIOTECA

JORGE ÁLVAREZ LLERAS
Información de la biblioteca

Horario

Lunes a Viernes:
6:30 am - 7:30 pm

Sábados:
8:00 am - 2:00 pm

Contacto

Teléfono: +57 601 668 3600

biblioteca@escuelaing.edu.co

Ubicación

Biblioteca Central: Bloque B

Biblioteca Satélite: Bloque G